Skip to main content

Translation of Pro-Angiogenic and Anti-Angiogenic Therapies into Clinical Use

  • Chapter
  • First Online:
Mechanical and Chemical Signaling in Angiogenesis

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 12))

Abstract

Angiogenesis is a central physiological process that establishes blood supply and oxygen supply to tissues, thereby enabling the growth and maintenance of nascent bodily structures. Angiogenic signals function throughout the lifecycle to ensure perfusion, proliferation, and preservation of cells, tissues, and organs. During embryonic development, angiogenesis is absolutely critical; the generation of blood vessels is crucial to the formation of every organ. In adulthood, angiogenesis is necessary for wound healing, as well as recovery from ischemic insults; in such cases, it is beneficial to promote angiogenesis. However, angiogenesis is undesirable and pathological in the context of cancerous tumors, as well as diabetic retinopathy; in these cases, it is preferable to halt angiogenesis. Thus, pro-angiogenic and anti-angiogenic signals must operate in balance to assure physiological health. This chapter reviews current knowledge regarding biochemical regulators of angiogenesis, and highlights molecular targets of pro-angiogenic and anti-angiogenic therapies. The chapter additionally discusses current progress in translating both pro-angiogenic and anti-angiogenic therapeutics into clinical usage, and identifies potential barriers to the clinical introduction of such therapeutics. Finally, the chapter suggests future basic research and clinical research priorities for tailoring angiogenesis to address patient needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman, J.: Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21), 1182–1186 (1971)

    Article  Google Scholar 

  2. Carmeliet, P.: Angiogenesis in health and disease. Nat. Med. 9(6), 653–660 (2003)

    Article  Google Scholar 

  3. Bhadada, S.V., Goyal, B.R., Patel, M.M.: Angiogenic targets for potential disorders. Fundam. Clin. Pharmacol. 25(1), 29–47 (2010)

    Article  Google Scholar 

  4. Simons, M.: Angiogenesis, arteriogenesis, and diabetes: paradigm reassessed? J. Am. Coll. Cardiol. 46(5), 835–837 (2005)

    Article  MathSciNet  Google Scholar 

  5. World Health Organization: The Global Burden of Disease: 2004 Update. WHO Press, Geneva (2008)

    Google Scholar 

  6. Holaday, J.W., Berkowitz, B.A.: Antiangiogenic drugs: insights into drug development from endostatin, avastin and thalidomide. Mol. Interventions 9(4), 157–166 (2009)

    Article  Google Scholar 

  7. Senger, D.R., et al.: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587), 983–985 (1983)

    Article  Google Scholar 

  8. Baeriswyl, V., Christofori, G.: The angiogenic switch in carcinogenesis. Semin. Cancer Biol. 19(5), 329–337 (2009)

    Article  Google Scholar 

  9. Pugh, C.W., Ratcliffe, P.J.: Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9(6), 677–684 (2003)

    Article  Google Scholar 

  10. Mitchell, D.C., Bryan, B.A.: Anti-angiogenic therapy: adapting strategies to overcome resistant tumors. J. Cell. Biochem. 111(3), 543–553 (2010)

    Article  Google Scholar 

  11. Abdelrahim, M., et al.: Angiogenesis: an update and potential drug approaches. Int. J. Oncol. 36(1), 5–18 (2010)

    Google Scholar 

  12. Carmeliet, P., et al.: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573), 435–439 (1996)

    Article  Google Scholar 

  13. Prior, B.M., Yang, H.T., Terjung, R.L.: What makes vessels grow with exercise training? J. Appl. Physiol. 97(3), 1119–1128 (2004)

    Article  Google Scholar 

  14. Ferrara, N., Gerber, H.P., LeCouter, J.: The biology of VEGF and its receptors. Nat. Med. 9(6), 669–676 (2003)

    Article  Google Scholar 

  15. Friesel, R.E., Maciag, T.: Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J 9(10), 919–925 (1995)

    Google Scholar 

  16. Beohar, N., et al.: Rebuilding the damaged heart: the potential of cytokines and growth factors in the treatment of ischemic heart disease. J. Am. Coll. Cardiol. 56(16), 1287–1297 (2010)

    Article  Google Scholar 

  17. Kapur, N.K., Rade, J.J.: Fibroblast growth factor 4 gene therapy for chronic ischemic heart disease. Trends Cardiovasc. Med. 18(4), 133–141 (2008)

    Article  Google Scholar 

  18. Frontini, M., et al.: Fibroblast growth factor 9 delivery during angiogenesis produces durable, vasoresponsive microvessels wrapped by smooth muscle cells. Nat. Biotechnol. 29(5), 421–427 (2011)

    Article  Google Scholar 

  19. Liekens, S., De Clercq, E., Neyts, J.: Angiogenesis: regulators and clinical applications. Biochem. Pharmacol. 61(3), 253–270 (2001)

    Article  Google Scholar 

  20. Gupta, K., Zhang, J.: Angiogenesis: a curse or cure? Postgrad. Med. J. 81(954), 236–242 (2005)

    Article  Google Scholar 

  21. Klagsbrun, M., Moses, M.A.: Molecular angiogenesis. Chem. Biol. 6(8), R217–R224 (1999)

    Article  Google Scholar 

  22. O’Reilly, M.S., et al.: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2), 315–328 (1994)

    Article  Google Scholar 

  23. O’Reilly, M.S., et al.: Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2), 277–285 (1997)

    Article  Google Scholar 

  24. Albini, A., et al.: Angiostatin anti-angiogenesis requires IL-12: the innate immune system as a key target. J. Transl. Med. 7, 5 (2009)

    Article  Google Scholar 

  25. Lachgar, S., et al.: Inhibitory effects of retinoids on vascular endothelial growth factor production by cultured human skin keratinocytes. Dermatology 199(Suppl 1), 25–27 (1999)

    Article  Google Scholar 

  26. Folkman, J., Ingber, D.E.: Angiostatic steroids: method of discovery and mechanism of action. Ann. Surg. 206(3), 374–383 (1987)

    Article  Google Scholar 

  27. Mathers, C.D., Loncar, D.: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11), e442 (2006)

    Article  Google Scholar 

  28. McMurray, J.J., Stewart, S.: Heart failure: epidemiology, aetiology, and prognosis of heart failure. Heart 83(5), 596–602 (2000)

    Article  Google Scholar 

  29. van der Laan, A.M.: Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat. Rev. Cardiol. 6(8), 515–523 (2009)

    Article  Google Scholar 

  30. Christoforou, N., Gearhart, J.D.: Stem cells and their potential in cell-based cardiac therapies. Prog. Cardiovasc. Dis. 49(6), 396–413 (2007)

    Article  Google Scholar 

  31. Segers, V.F.M., Lee, R.T.: Protein therapeutics for cardiac regeneration after myocardial infarction. J. Cardiovasc. Transl. Res. 3(5), 469–477 (2010)

    Google Scholar 

  32. White, H.D., Chew, D.P.: Acute myocardial infarction. Lancet 372(9638), 570–584 (2008)

    Article  Google Scholar 

  33. Syed, I.S., Sanborn, T.A., Rosengart, T.K.: Therapeutic angiogenesis: a biologic bypass. Cardiology 101(1–3), 131–143 (2004)

    Article  Google Scholar 

  34. Pearlman, J.D., et al.: Magnetic resonance mapping demonstrates benefits of VEGF–induced myocardial angiogenesis. Nat. Med. 1(10), 1085–1089 (1995)

    Article  Google Scholar 

  35. Harada, K., et al.: Vascular endothelial growth factor administration in chronic myocardial ischemia. Am. J. Physiol. 270(5 Pt 2), H1791–H1802 (1996)

    Google Scholar 

  36. Lopez, J.J., et al.: VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc. Res. 40(2), 272–281 (1998)

    Article  Google Scholar 

  37. Banai, S., et al.: Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89(5), 2183–2189 (1994)

    Article  Google Scholar 

  38. Henry, T.D., et al.: Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am. Heart J. 142(5), 872–880 (2001)

    Article  Google Scholar 

  39. Losordo, D.W., et al.: Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98(25), 2800–2804 (1998)

    Article  Google Scholar 

  40. Symes, J.F., et al.: Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann. Thorac. Surg. 68(3), 830–836 (1999)

    Article  Google Scholar 

  41. Vale, P.R., et al.: Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 102(9), 965–974 (2000)

    Article  Google Scholar 

  42. Rosengart, T.K., et al.: Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100(5), 468–474 (1999)

    Article  Google Scholar 

  43. Henry, T.D., et al.: The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107(10), 1359–1365 (2003)

    Article  Google Scholar 

  44. Kastrup, J., et al.: Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris: a randomized double-blind placebo-controlled study: the Euroinject one trial. J. Am. Coll. Cardiol. 45(7), 982–988 (2005)

    Article  Google Scholar 

  45. Hedman, M., et al.: Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the kuopio angiogenesis trial (KAT). Circulation 107(21), 2677–2683 (2003)

    Article  Google Scholar 

  46. Yanagisawa-Miwa, A., et al.: Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257(5075), 1401–1403 (1992)

    Article  Google Scholar 

  47. Grines, C.L., et al.: Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation 105(11), 1291–1297 (2002)

    Article  Google Scholar 

  48. Grines, C.L., et al.: A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J. Am. Coll. Cardiol. 42(8), 1339–1347 (2003)

    Article  Google Scholar 

  49. Henry, T.D., et al.: Effects of Ad5FGF-4 in patients with angina: An analysis of pooled data from the AGENT-3 and AGENT-4 trials. J. Am. Coll. Cardiol. 50(11), 1036–1046 (2007)

    Article  Google Scholar 

  50. Zachary, I., Morgan, R.D.: Therapeutic angiogenesis for cardiovascular disease: biological context, challenges, prospects. Heart 97(3), 181–189 (2011)

    Article  Google Scholar 

  51. Annex, B.H., Simons, M.: Growth factor-induced therapeutic angiogenesis in the heart: protein therapy. Cardiovasc. Res. 65(3), 649–655 (2005)

    Article  Google Scholar 

  52. Rosinberg, A., et al.: Therapeutic angiogenesis for myocardial ischemia. Expert Rev. Cardiovasc. Ther. 2(2), 271–283 (2004)

    Article  Google Scholar 

  53. Scott, R.C., et al.: Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J 23(10), 3361–3367 (2009)

    Article  Google Scholar 

  54. Silva, E.A., Mooney, D.J.: Effects of VEGF spatial and temporal presentation on angiogenesis. Biomaterials 31(6), 1235–1241 (2010)

    Article  Google Scholar 

  55. Kufe, D.W., et al.: Cancer Medicine. BC Decker, Hamilton (2003)

    Google Scholar 

  56. Hanahan, D., Weinberg, R.A.: Judah Folkman (1933–2008). Science 319(5866), 1055 (2008)

    Article  Google Scholar 

  57. Eichhorn, M.E., et al.: Angiogenesis in cancer: molecular mechanisms, clinical impact. Langenbecks Arch. Surg. 392(3), 371–379 (2007)

    Article  Google Scholar 

  58. Kim, K.J., et al.: Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumor growth in vivo. Nature 362(6423), 841–844 (1993)

    Article  Google Scholar 

  59. Ferrara, N., et al.: Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug. Discovery 3(5), 391–400 (2004)

    Article  Google Scholar 

  60. Hurwitz, H., et al.: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350(23), 2335–2342 (2004)

    Article  Google Scholar 

  61. Ferrara, N., Hillan, K.J., Novotny, W.: Bevacizumab (avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem. Biophys. Res. Commun. 333(2), 328–335 (2005)

    Article  Google Scholar 

  62. Escudier, B., et al.: Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370(9605), 2103–2111 (2007)

    Article  Google Scholar 

  63. Escudier, B., et al.: Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J. Clin. Oncol. 28(13), 2144–2150 (2010)

    Article  Google Scholar 

  64. Vredenburgh, J.J., et al.: Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25(30), 4722–4729 (2007)

    Article  Google Scholar 

  65. Sandler, A., et al.: Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355(24), 2542–2550 (2006)

    Article  Google Scholar 

  66. Miller, K., et al.: Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357(26), 2666–2676 (2007)

    Article  Google Scholar 

  67. Van Cutsem, E., et al.: Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J. Clin. Oncol. 27(13), 2231–2237 (2009)

    Article  Google Scholar 

  68. Kindler, H.L., et al.: Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the cancer and leukemia group B (CALGB 80303). J. Clin. Oncol. 28(22), 3617–3622 (2010)

    Article  Google Scholar 

  69. Ferrara, N.: Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev. 21(1), 21–26 (2010)

    Article  Google Scholar 

  70. Casanovas, O., et al.: Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4), 299–309 (2005)

    Article  Google Scholar 

  71. Fisher, T., et al.: Mechanisms operative in the anti-tumor activity of temozolomide in glioblastoma multiforme. Cancer J. 13(5), 335–344 (2007)

    Article  Google Scholar 

  72. Paez-Ribas, M., et al.: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3), 220–231 (2009)

    Article  Google Scholar 

  73. Norden, A.D., et al.: Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70(10), 779–787 (2008)

    Article  Google Scholar 

  74. Chow, L.Q., Eckhardt, S.G.: Sunitinib: from rational design to clinical efficacy. J. Clin. Oncol. 25(7), 884–896 (2007)

    Article  Google Scholar 

  75. Motzer, R.J., et al.: Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356(2), 115–124 (2007)

    Article  Google Scholar 

  76. Demetri, G.D., et al.: Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368(9544), 1329–1338 (2006)

    Article  Google Scholar 

  77. Goodman, V.L., et al.: Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin. Cancer Res. 13(5), 1367–1373 (2007)

    Article  Google Scholar 

  78. Wilhelm, S.M., et al.: Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 7(10), 3129–3140 (2008)

    Article  Google Scholar 

  79. Escudier, B., et al.: Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356(2), 125–134 (2007)

    Article  Google Scholar 

  80. Llovet, J.M., et al.: Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359(4), 378–390 (2008)

    Article  Google Scholar 

  81. Kesisis, G., Broxterman, H., Giaccone, G.: Angiogenesis inhibitors. Drug selectivity and target specificity. Curr. Pharm. Des. 13(27), 2795–2809 (2007)

    Article  Google Scholar 

  82. Shaked, Y., Kerbel, R.S.: Antiangiogenic strategies on defense: on the possibility of blocking rebounds by the tumor vasculature after chemotherapy. Cancer Res. 67(15), 7055–7058 (2007)

    Article  Google Scholar 

  83. Ebos, J.M.L., et al.: Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3), 232–239 (2009)

    Article  Google Scholar 

  84. Wells, W.A.: Metastasizing in search of oxygen. J. Cell Biol. 161(4), 669 (2003)

    Article  Google Scholar 

  85. Miller, K.D., Sweeney, C.J., Sledge, G.W.: The snark is a boojum: the continuing problem of drug resistance in the antiangiogenic era. Ann. Oncol. 14(1), 20–28 (2003)

    Article  Google Scholar 

  86. Slaton, J.W., et al.: Interferon-alpha-mediated down-regulation of angiogenesis-related genes and therapy of bladder cancer are dependent on optimization of biological dose and schedule. Clin. Cancer Res. 5(10), 2726–2734 (1999)

    Google Scholar 

Download references

Acknowledgments

The author thanks the faculty and students of the Harvard University School of Engineering and Applied Sciences for providing inspiration and support of innovative work in biomedical engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata K. Bhatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhatia, S.K. (2013). Translation of Pro-Angiogenic and Anti-Angiogenic Therapies into Clinical Use. In: Reinhart-King, C. (eds) Mechanical and Chemical Signaling in Angiogenesis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30856-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30856-7_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30855-0

  • Online ISBN: 978-3-642-30856-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics