Skip to main content

12 Orchid Mycorrhizas: Molecular Ecology, Physiology, Evolution and Conservation Aspects

  • Chapter
  • First Online:
Fungal Associations

Part of the book series: The Mycota ((MYCOTA,volume 9))

Abstract

Scientific interest in orchid mycorrhizas, the symbiotic association between orchid roots and fungi, continues to grow. Advances in molecular identification techniques have enabled the detection of a wide array of fungal partners of orchids. The use of stable and radioactive isotopes has confirmed many of these associations and provided insight into the diversity of nutrient flow between symbionts. Fungal specificity patterns in orchids have been investigated in terms of their evolutionary and adaptive significances and their role in orchid speciation. An understanding of the mycorrhizal biology of rare orchid species is also essential for conservation procedures. This review is intended to provide an overview of contemporary approaches to studying orchid mycorrhizas. It elaborates on what has been gleaned from these studies with regards the ecology, physiology, evolution and conservation aspects of orchid mycorrhizas and highlights areas of the association that need further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadie J-C, Püttsepp Ü, Gebauer G, Faccio A, Bonfante P, Selosse M-A (2006) Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Can J Bot 84:1462–1477

    CAS  Google Scholar 

  • Alexander C, Hadley G (1985) Carbon movement between host and mycorrhizal endophyte during the development of the orchid Goodyera repens Br. New Phytol 101:657–665

    Google Scholar 

  • Batty AL, Dixon KW, Brundrett MC, Sivasithamparam K (2001) Long-term storage of mycorrhizal fungi and seed as a tool for the conservation of endangered Western Australian terrestrial orchids. Aust J Bot 49:619–628

    Google Scholar 

  • Batty AL, Brundrett MC, Dixon KW, Sivasithamparam K (2006a) New methods to improve symbiotic propagation of temperate terrestrial orchid seedlings from axenic culture to soil. Aust J Bot 54:367–374

    Google Scholar 

  • Batty AL, Brundrett MC, Dixon KW, Sivasithamparam K (2006b) In situ symbiotic seed germination and propagation of terrestrial orchid seedlings for establishment at field sites. Aust J Bot 54:375–381

    Google Scholar 

  • Bayman P, Otero JT (2006) Microbial endophytes of orchid roots. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes, soil biology, vol. 9, part II. Springer, Berlin, pp 153–177

    Google Scholar 

  • Bayman P, Gonzalez EJ, Fumero JJ, Tremblay RL (2002) Are fungi necessary? How fungicides affect growth and survival of the orchid Lepanthes rupestris in the field. J Ecol 90:1002–1008

    CAS  Google Scholar 

  • Bidartondo MI, Read DJ (2008) Fungal specificity bottlenecks during orchid germination and development. Mol Ecol 17:3707–3716

    PubMed  Google Scholar 

  • Bidartondo MI, Bruns TD, Weiβ M, Sérgio C, Read DJ (2003) Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc Lond B 270:835–842

    Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B 271:1799–1806

    CAS  Google Scholar 

  • Boddington M, Dearnaley JDW (2008) Morphological and molecular identification of fungal endophytes from roots of Dendrobium speciosum. Proc R Soc Queensland 114:13–17

    Google Scholar 

  • Bonito G, Gryganskyi A, Vilgalys R, Trappe J (2010) A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host specificity, and long-distance dispersal. Mol Ecol 19:4994–5008

    PubMed  CAS  Google Scholar 

  • Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61

    PubMed  Google Scholar 

  • Bougoure DS, Cairney JWG (2005) Fungi associated with hair roots of Rhododendron lochiae (Ericaceae) in an Australian tropical cloud forest revealed by culturing and culture-independent molecular methods. Environ Microbiol 7:1743–1754

    PubMed  CAS  Google Scholar 

  • Bougoure JJ, Dearnaley JDW (2005) The fungal endophytes of Dipodium variegatum (Orchidaceae). Australas Mycol 24:15–19

    Google Scholar 

  • Bougoure JJ, Bougoure DS, Cairney JWG, Dearnaley JDW (2005) ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycol Res 109:452–460

    PubMed  CAS  Google Scholar 

  • Bougoure JJ, Ludwig M, Brundrett M, Grierson P (2009) Identity and specificity of the fungi forming mycorrhizas with the rare myco-heterotrophic orchid Rhizanthella gardneri. Mycol Res 113:1097–1106

    PubMed  CAS  Google Scholar 

  • Bougoure JJ, Brundrett MC, Grierson PF (2010) Carbon and nitrogen supply to the rare underground orchid Rhizanthella gardneri. New Phytol 186:947–956

    PubMed  CAS  Google Scholar 

  • Boullard B (1985) Un biologiste d’exception: Noël Bernard, 1874–1911. Presse de l’Université de Rouen, Rouen

    Google Scholar 

  • Brundrett MC (2007) Scientific approaches to Australian temperate terrestrial orchid conservation. Aust J Bot 55:293–307

    Google Scholar 

  • Brundrett MC, Scade A, Batty AL, Dixon KW, Sivasithamparam K (2003) Development of in situ and ex situ seed baiting techniques to detect mycorrhizal fungi from terrestrial orchid habitats. Mycol Res 107:1210–1220

    PubMed  Google Scholar 

  • Burgeff H (1959) Mycorrhizas of orchids. In: Withner K (ed) The orchids. Ronald, New York, pp 361–395

    Google Scholar 

  • Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416

    PubMed  CAS  Google Scholar 

  • Cameron DD, Johnson I, Leake JR, Read DJ (2007) Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Ann Bot 99:831–834

    PubMed  CAS  Google Scholar 

  • Cameron DD, Johnson I, Leake JR, Read DJ (2008) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytol 180:176–184

    PubMed  CAS  Google Scholar 

  • Claridge AW, May TW (1994) Mycophagy among Australian mammals. Aust J Ecol 19:251–275

    Google Scholar 

  • Clements MA (1988) Orchid mycorrhizal associations. Lindleyana 3:73–86

    Google Scholar 

  • Clements MA, Muir H, Cribb PJ (1986) A preliminary report on the symbiotic germination of European terrestrial orchids. Kew Bull 41:437–445

    Google Scholar 

  • Collier FA, Bidartondo MI (2009) Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. J Ecol 97:950–963

    Google Scholar 

  • De Candolle AP (1815) Mémoire sur les rhizoctones, nouveau genre de champignons qui attaque les racines des plantes et en particulier celle de la Luzerne cultivée. Mem Mus Hist Nat 2:209–216

    Google Scholar 

  • Dearnaley JDW (2006) The fungal endophytes of Erythrorchis cassythoides – is this orchid saprophytic or parasitic? Australas Mycol 25:51–57

    Google Scholar 

  • Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486

    PubMed  Google Scholar 

  • Dearnaley JDW, Bougoure JJ (2010) Isotopic and molecular evidence for saprotrophic Marasmiaceae mycobionts in rhizomes of Gastrodia sesamoides. Fungal Ecol 3:288–294

    Google Scholar 

  • Dearnaley JDW, Le Brocque AF (2006) Molecular identification of the primary root fungal endophytes of Dipodium hamiltonianum (Yellow hyacinth orchid). Aust J Bot 54:487–491

    CAS  Google Scholar 

  • Dearnaley JDW, Murray AJ, Mathieson MT (2009) Molecular identification of a mycorrhizal Sebacinaceae from the endangered Caladenia atroclavia (Black-clubbed spider orchid). Australas Mycol 28:45–50

    Google Scholar 

  • Dickie IA, FitzJohn RG (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17:259–270

    PubMed  CAS  Google Scholar 

  • Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson N, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190:794–804

    PubMed  CAS  Google Scholar 

  • Fan L, Guo S, Cao W, Xiao P, Xu J, Fan L, Guo SX, Cao WQ, Xiao PG, Xu JT (1996) Isolation, culture, identification and biological activity of Mycena orchidicola sp. nov. in Cymbidium sinense (Orchidaceae). Acta Mycol Sin 15:251–255

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    PubMed  CAS  Google Scholar 

  • Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223

    CAS  Google Scholar 

  • Girlanda M, Selosse MA, Cafasso D, Brilli F, Delfine S, Fabbian R, Ghignone S, Pinelli P, Segreto R, Loreto F,Cozzolino S, Perotto S (2006) Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Mol Ecol 15:491–504

    PubMed  CAS  Google Scholar 

  • Gowland KM, Mathesius U, Clements MA, Nicotra AB (2007) Understanding the distribution of three species of epiphytic orchids in temperate Australian rainforest by investigation of their host and fungal associates. Lankesteriana 7:44–46

    Google Scholar 

  • Graham RR, Dearnaley JDW (2007) The rare Australian epiphytic orchid Sarcochilus weinthalii associates with a single species of Ceratobasidium. Fungal Divers 54:31–37

    Google Scholar 

  • Graham RR, Dearnaley JDW (2012) Fungal Divers 54:31–37

    Google Scholar 

  • Guo S-X, Fan L, Cao W-Q, Xu J-T, Xiao P-G (1997) Mycena anoectochila sp. nov. isolated from mycorrhizal roots of Anoectochilus roxburghii from Xishuangbanna, China. Mycologia 89:952–954

    Google Scholar 

  • Hadley G, Purves S (1974) Movement of 14carbon from host to fungus in orchid mycorrhiza. New Phytol 73:475–482

    CAS  Google Scholar 

  • Hadley G, Williamson B (1971) Analysis of post infection growth stimulus in orchid mycorrhiza. New Phytol 70:445–455

    Google Scholar 

  • Hashimoto Y, Fukukawa S, Kunishi A, Suga H, Richard F, Sauve M, Selosse M-A (2012) Mycoheterotrophic germination of Pyrola asarifolia dust seeds reveals convergences with germination in orchids. New Phytol 195:620–630

    PubMed  Google Scholar 

  • Hobbie EA, Weber NS, Trappe JM (2001) Mycorrhizal vs saprotrophic status of fungi: the isotopic evidence. New Phytol 150:601–610

    CAS  Google Scholar 

  • Hollick PS, Taylor RJ, McComb JA, Dixon KW (2005) If orchid mycorrhizal fungi are so specific, how do natural hybrids cope? Selbyana 26:159–170

    Google Scholar 

  • Hollick PS, McComb JA, Dixon KW (2007) Introduction, growth and persistence in situ of orchid mycorrhizal fungi. Aust J Bot 55:665–672

    Google Scholar 

  • Huynh TT, McLean CB, Coates F, Lawrie AC (2004) Effect of developmental stage and peloton morphology on success in isolation of mycorrhizal fungi in Caladenia formosa (Orchidaceae). Aust J Bot 52:231–241

    Google Scholar 

  • Huynh TT, Thomson R, McLean CB, Lawrie AC (2009) Functional and genetic diversity of mycorrhizal fungi from single plants of Caladenia formosa (Orchidaceae). Ann Bot 104:757–765

    PubMed  CAS  Google Scholar 

  • Hynson NA, Preiss K, Gebauer G (2009) Is it better to give than receive? A stable isotope perspective on orchid-fungal carbon transport in the green orchid species Goodyera repens and Goodyera oblongifolia. New Phytol 182:8–11

    PubMed  CAS  Google Scholar 

  • Illyés Z, Halász K, Rudnóy S, Ouanphanivanh N, Garay T, Bratek Z (2009) Changes in the diversity of the mycorrhizal fungi of orchids as a function of the water supply of the habitat. J Appl Bot Food Qual 83:28–36

    Google Scholar 

  • Irwin MA, Bougoure JJ, Dearnaley JDW (2007) Pterostylis nutans (Orchidaceae) has a specific association with two Ceratobasidium endophytes across its range in Eastern Australia. Mycoscience 48:231–239

    CAS  Google Scholar 

  • Jacquemyn H, Honnay O, Cammue BPA, Brys R, Lievens B (2010) Low specificity and nested subset structure characterise mycorrhizal associations in five-closely related species of the genus Orchis. Mol Ecol 19:4086–4095

    PubMed  Google Scholar 

  • Jacquemyn H, Brys R, Cammue BPA, Honnay O, Lievens B (2011) Mycorrhizal associations and reproductive isolation in three closely related Orchis species. Ann Bot 107:347–356

    PubMed  CAS  Google Scholar 

  • Jones DL (2006) A complete guide to native orchids of Australia including the island territories. Reed New Holland, Sydney

    Google Scholar 

  • Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse M-A (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166:639–653

    PubMed  CAS  Google Scholar 

  • Kennedy AH, Taylor DL, Watson LE (2011) Mycorrhizal specificity in the fully mycoheterotrophic Hexalectris Raf. (Orchidaceae: Epidendroideae). Mol Ecol 20:1303–1316

    PubMed  Google Scholar 

  • Kikuchi G, Higuchi M, Morota T, Nagasawa E, Suzuki A (2008) Fungal symbiont and cultivation test of Gastrodia elata Blume (Orchidaceae). Jpn J Bot 83:88–95

    Google Scholar 

  • Kottke I, Haug I, Setaro S, Suarez JP, Weiß M, Preußing M, Nebel M, Oberwinkler F (2008) Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest. Basic Appl Ecol 9:13–23

    CAS  Google Scholar 

  • Kottke I, Suarez JP, Herrerra P, Cruz D, Bauer R, Haug I, Garnica S (2010) Atractiellomycetes belonging to the ‘rust’ lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic neotropical orchids. Proc R Soc Lond B 277:1289–1298

    Google Scholar 

  • Kristiansen KA, Taylor DL, Kjøller R, Rasmussen HN, Rosendahl S (2001) Identification of mycorrhizal fungi from single pelotons of Dactylorhiza majalis (Orchidaceae) using single-strand conformation polymorphism and mitochondrial ribosomal large subunit DNA sequences. Mol Ecol 10:2089–2093

    PubMed  CAS  Google Scholar 

  • Kusano S (1911) Gastrodia elata and its symbiotic association with Armillaria mellea. J Coll Agric Jpn 9:1–73

    Google Scholar 

  • Latalova K, Balaz M (2010) Carbon nutrition of mature green orchid Serapias strictiflora and its mycorrhizal fungus Epulorhiza sp. Biol Plantarum 54:97–104

    Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Google Scholar 

  • Leake JR (2004) Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Curr Opin Plant Biol 7:1–7

    Google Scholar 

  • Leake JR, Cameron DD, Beerling DJ (2008) Fungal fidelity in the myco-heterotroph-to-autotroph lifecycle of Lycopodiaceae: a case of parental nurture? New Phytol 177:572–576

    PubMed  Google Scholar 

  • Liebel HT, Gebauer G (2011) Stable isotope signatures confirm carbon and nitrogen gain thtrough ectomycorrhizas in the ghost orchid Epipogium aphyllum Swartz. Plant Biol 13:270–275

    PubMed  CAS  Google Scholar 

  • Liebel HT, Bidartondo MI, Preiss K, Segreto R, Stockel M, Rodda M, Gebauer G (2010) C and N stable isotope signatures reveal constraints to nutritional modes in orchids from the Mediterranean and Macaronesia. Am J Bot 97:903–912

    PubMed  CAS  Google Scholar 

  • Lievens B, van Kerchhove S, Juste A, Cammue BPA, Honnay O, Jacquemyn H (2010) From extensive clone libraries to comprehensive DNA arrays for the efficient and simultaneous detection and identification of orchid mycorrhizal fungi. J Microbiol Methods 80:76–85

    PubMed  CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    PubMed  CAS  Google Scholar 

  • Martos F, Dulormne M, Pailler T, Bonfante P, Faccio A, Fournel J, Dubois M-P, Selosse M-A (2009) Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytol 184:668–681

    PubMed  CAS  Google Scholar 

  • Martos F, Munoz F, Pailler T, Kottke I, Gonneau C, Selosse M-A (2012) The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Mol Ecol in press

    Google Scholar 

  • McCormick MK, Whigham DF, O’Neill J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438

    Google Scholar 

  • McCormick MK, Whigham DF, Sloan D, O’Malley K, Hodkinson B (2006) Orchid–fungus fidelity: a marriage meant to last? Ecology 87:903–911

    PubMed  Google Scholar 

  • McCormick MK, Whigham DF, O’Neill JP, Becker JJ, Werner S, Rasmussen HN, Bruns TD, Taylor DL (2009) Abundance and distribution of Corallorhiza odontorhiza reflect variations in climate and ectomycorrhizae. Ecol Monogr 79:619–635

    Google Scholar 

  • McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of mycoheterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548

    Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the mycoheterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247

    Google Scholar 

  • Merckx V, Bidartondo MI, Hynson N (2009) Mycoheterotrophy: when fungi host plants. Ann Bot 104:1255–1261

    PubMed  Google Scholar 

  • Moore RT (1987) The genera of Rhizoctonia-like fungi: Ascorhizoctonia, Ceratorhiza sp. nov., Epulorhiza sp. nov., Moniliopsis and Rhizoctonia. Mycotaxon 29:91–99

    Google Scholar 

  • Motomura H, Selosse M-A, Martos F, Kagawa A, Yukawa T (2010) Mycoheterotrophy evolved from mixotrophic ancestors: evidence in Cymbidium (Orchidaceae). Ann Bot 106:573–581

    PubMed  Google Scholar 

  • Ogura-Tsujita Y, Yukawa T (2008a) High mycorrhizal specificity in a widespread mycoheterotrophic plant, Eulophia zollingeri (Orchidaceae). Am J Bot 95:93–97

    PubMed  Google Scholar 

  • Ogura-Tsujita Y, Yukawa T (2008b) Epipactis helleborine shows strong mycorrhizal preference towards ectomycorrhizal fungi with contrasting geographic distributions in Japan. Mycorrhiza 18:331–338

    PubMed  Google Scholar 

  • Ogura-Tsujita Y, Gebauer G, Hashimoto T, Umata H, Yukawa T (2009) Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc R Soc Lond B 276:761–768

    CAS  Google Scholar 

  • Osorio-Gil EM, Forero-Montana J, Otero JT (2008) Variation in mycorrhizal infection of the epiphytic orchid Ionopsis utricularioides (Orchidaceae) on different substrata. Caribbean J Sci 44:130–132

    Google Scholar 

  • Otero JT, Flanagan NS (2006) Orchid diversity: beyond deception. Trends Ecol Evol 21:64–65

    PubMed  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858

    CAS  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2004) Diversity in mycorrhizal preferences between two tropical orchids. Mol Ecol 13:2393–2404

    PubMed  CAS  Google Scholar 

  • Otero JT, Bayman P, Ackerman JD (2005) Variation in mycorrhizal performance in the epiphytic orchid Tolumnia variegata in vitro: the potential for natural selection. Evol Ecol 19:29–43

    Google Scholar 

  • Otero JT, Flanagan NS, Herre EA, Ackerman JD, Bayman P (2007) Widespread mycorrhizal specificity correlates to mycorrhizal function in the neotropical, epiphytic orchid Ionopsis utricularioides (Orchidaceae). Am J Bot 94:1944–1950

    PubMed  Google Scholar 

  • Ouanphanivanh N, Merenyi Z, Orczan AK, Bratek Z, Szigeti Z, Illyes Z (2008) Could orchids indicate truffle habitats? Mycorrhizal association between orchids and truffles. Acta Bot Szegediensis 52:229–232

    Google Scholar 

  • Paduano C, Rodda M, Ercole E, Girlanda M, Perotto S (2011) Pectin localization in the Mediterranean orchid Limodorum abortivum reveals modulation of the plant interface in response to different mycorrhizal fungi. Mycorrhiza 21:97–104

    PubMed  CAS  Google Scholar 

  • Pereira OL, Rollemberg CL, Borges AC, Matsuokae K, Kasuya MCM (2003) Epulorhiza epiphytica sp. nov. isolated from mycorrhizal roots of epiphytic orchids in Brazil. Mycoscience 44:153–155

    Google Scholar 

  • Pereira OL, Kasuya MCM, Borges AC, de Araujo EF (2005) Morphological and molecular characterization of mycorrhizal fungi isolated from neotropical orchids in Brazil. Can J Bot 83:54–65

    CAS  Google Scholar 

  • Phillips RD, Barrett MD, Dixon KW, Hopper SD (2011) Do mycorrhizal symbioses cause rarity in orchids? J Ecol 99:858–869

    Google Scholar 

  • Pickles BJ, Genney DR, Potts JM, Lennon JJ, Anderson IC, Alexander IJ (2010) Spatial and temporal ecology of Scots pine ectomycorrhizas. New Phytol 186:755–768

    PubMed  CAS  Google Scholar 

  • Pringle A, Taylor JW (2002) Understanding the fitness of filamentous fungi. Trends Microbiol 10:474–481

    PubMed  CAS  Google Scholar 

  • Purves S, Hadley G (1975) Movement of carbon compounds between the partners in orchid mycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 173–194

    Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids from seed to mycotrophic plant. Cambridge University Press, Cambridge

    Google Scholar 

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163

    CAS  Google Scholar 

  • Rasmussen HN, Rasmussen FN (2007) Trophic relationships in orchid mycorrhiza – diversity and implications for conservation. Lankesteriana 7:334–341

    Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118:334–345

    Google Scholar 

  • Rasmussen HN, Whigham DF (1993) Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. Am J Bot 80:1374–1378

    Google Scholar 

  • Richard F, Moreau P-A, Selosse M-A, Gardes M (2004) Diversity and fruiting patterns of ectomycorrhizal and litter saprobic fungi in an old-growth Mediterranean forest dominated by Quercus ilex L. Can J Bot 82:1711–1729

    Google Scholar 

  • Roche SA, Carter RJ, Peakall R, Smith LM, Whitehead MR, Linde CC (2010) A narrow group of monophyletic Tulasnella (Tulasnellaceae) symbiont lineages are associated with multiple species of Chiloglottis (Orchidaceae); implications for orchid diversity. Am J Bot 97:1313–1327

    PubMed  Google Scholar 

  • Roy M, Whatthana S, Richard F, Vessabutr S, Selosse M-A (2009a) Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi. BMC Biol 7:51

    PubMed  Google Scholar 

  • Roy M, Yagame T, Yamato M, Iwase K, Heinz C, Faccio A, Bonfante P, Selosse M-A (2009b) Ectomycorrhizal Inocybe species associate with the mycoheterotrophic orchid Epipogium aphyllum but not its asexual propagules. Ann Bot 104:595–610

    PubMed  Google Scholar 

  • Sadovsky O (1965) Orchideen im eigenen Garten. Bayer, Munich

    Google Scholar 

  • Schatz B, Geoffroy A, Dainat B, Bessiere J-M, Buatois B, Hossaert-McKey SM-A (2010) A case study of modified interactions with symbionts in a hybrid Mediterranean orchid. Am J Bot 97:1278–1288

    PubMed  Google Scholar 

  • Seiffert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Resour 9:83–89

    Google Scholar 

  • Selosse M-A, Roy M (2009) Green plants that feed on fungi: facts and questions about mixtrophy. Trends Plant Sci 14:64–70

    PubMed  CAS  Google Scholar 

  • Selosse M-A, Weiß M, Jany J-L, Tillier A (2002) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844

    PubMed  CAS  Google Scholar 

  • Selosse M-A, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426

    PubMed  CAS  Google Scholar 

  • Selosse M-A, Dubois M-P, Alvarez N (2009) Are Sebacinales common root endophytes? Mycol Res 113:1062–1069

    PubMed  CAS  Google Scholar 

  • Selosse M-A, Martos F, Perry BA, Padamsee M, Roy M, Pailler T (2010) Saprotrophic fungal mycorrhizal symbionts in achlorophyllous orchid. Finding treasures among the molecular scraps. Plant Signal Behav 5:1–5

    Google Scholar 

  • Shefferson RP, Taylor DL, Weiß M, Garnica S, McCormick MK, Adams S, Gray HM, McFarland JW, Kull T, Tali K, Yukawa T, Kawahara T, Miyoshi K, Lee YI (2007) The evolutionary history of mycorrhizal specificity among lady’s slipper orchids. Evolution 61:1380–1390

    PubMed  Google Scholar 

  • Shefferson RP, Kull T, Tali K (2008) Mycorrhizal interactions of orchids colonizing Estonian mine tailings hills. Am J Bot 95:156–164

    PubMed  Google Scholar 

  • Shefferson RP, Cowden CC, McCormick MK, Yukawa T, Ogura-Tsujita Y, Hashimoto T (2010) Evolution of host breadth in broad interactions: mycorrhizal specificity in East Asian and North American rattlesnake plantains (Goodyera spp.) and their fungal hosts. Mol Ecol 19:3008–3017

    PubMed  Google Scholar 

  • Smith SE (1966) Physiology and ecology of orchid mycorhizal fungi with reference to seedling nutrition. New Phytol 65:488–499

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, Cambridge

    Google Scholar 

  • Smith ZF, James EA, McDonnell MJ, McLean CB (2009) Planting conditions improve translocation success of the endangered terrestrial orchid Diuris fragrantissima (Orchidaceae). Aust J Bot 57:200–209

    Google Scholar 

  • Smith ZF, James EA, McLean CB (2010) Mycorrhizal specificity of Diuris fragrantissima (Orchidaceae) and persistence in a reintroduced population. Aust J Bot 58:97–106

    Google Scholar 

  • Sommerville KD, Siemon JP, Wood CB, Offord CA (2008) Simultaneous encapsulation of seed and mycorrhizal fungi for long term storage and propagation of terrestrial orchids. Aust J Bot 56:609–615

    Google Scholar 

  • Stark C, Babik W, Durka W (2009) Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea. Mycol Res 113:952–959

    PubMed  Google Scholar 

  • Stewart SL, Kane ME (2007) Symbiotic seed germination and evidence for in vitro mycobiont specificity in Spiranthes brevilabris (Orchidaceae) and its implications for species-level conservation. In Vitro Cell Dev- Biol Plant 43:178–186

    Google Scholar 

  • Suáarez JP, Weiß M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270

    Google Scholar 

  • Suáarez JP, Weiß M, Abele A, Garnica S, Oberwinkler F, Kottke I (2008) Members of Sebacinales subgroup B form mycorrhizae with epiphytic orchids in a neotropical rain forest. Mycol Prog 7:75–85

    Google Scholar 

  • Swarts ND (2007) Integrated conservation of the rare and endangered terrestrial orchid Caladenia huegellii H.G. Reichb. PhD thesis, Murdoch University, Murdoch (cited in Wright et al. 2009)

    Google Scholar 

  • Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556

    PubMed  Google Scholar 

  • Swarts ND, Sinclair EA, Francis A, Dixon KW (2010) Ecological specialisation in mycorrhizal symbiosis leads to rarity in an endangered orchid. Mol Ecol 19:3226–3242

    PubMed  CAS  Google Scholar 

  • Taylor DL, Bruns TD (1997) Independent, specialized invasions of ectomycorrhizal mutualism by two non photosynthetic orchids. Proc Natl Acad Sci USA 94:4510–4515

    PubMed  CAS  Google Scholar 

  • Taylor DL, McCormick MK (2007) Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033

    PubMed  Google Scholar 

  • Taylor DL, Bruns TD, Leake JR, Read DJ (2002) Mycorrhizal specificity and function in myco-heterotrophic plants. In: Van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Springer, Berlin, pp 375–413

    Google Scholar 

  • Taylor DL, Bruns TD, Szaro TM, Hodges SA (2003) Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am J Bot 90:1168–1179

    PubMed  CAS  Google Scholar 

  • Taylor DL, Bruns TD, Hodges SA (2004) Evidence for mycorrhizal races in a cheating orchid. Proc R Soc Lond B 271:35–143

    Google Scholar 

  • Tedersoo L, Nara K (2010) General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol 185:351–354

    PubMed  Google Scholar 

  • Tesitelova T, Tesitel J, Jersakova J, Rihova G, Selosse M-A (2012) Symbiotic germination capability of four Epipactis species (Orchidaceae) is broader than expected from adult ecology. Am J Bot 99:1020–1032

    Google Scholar 

  • The Plant List (2010) The plant list, ver. 1. http://www.theplantlist.org. Accessed 1 Jan 2011

  • Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856

    PubMed  Google Scholar 

  • Thompson JN (1994) The co-evolutionary process. University of Chicago Press, Chicago

    Google Scholar 

  • Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1–54

    Google Scholar 

  • Trudell SA, Rygiewicz PT, Edmonds RL (2003) Nitrogen and carbon stable isotope abundances support the mycoheterotrophic nature and host specificity of certain achlorophyllous plants. New Phytol 160:391–401

    CAS  Google Scholar 

  • Umata H (1995) Seed germination of Galeola altissima, an achlorophyllous orchid with aphyllophorales fungi. Mycoscience 36:369–372

    Google Scholar 

  • Vujanovic V, St-Arnaud M, Barabe D, Thibeault G (2000) Viability testing of orchid seed and promotion of coloration and germination. Ann Bot 86:79–86

    Google Scholar 

  • Wang H, Wang Z, Zhang F, Liu J, He X (1997) A cytological study on the nutrient-uptake mechanism of a saprophytic orchid Gastrodia elata. Acta Bot Sin 39:500–504

    Google Scholar 

  • Warcup JH (1971) Specificity of mycorrhizal association in some Australian terrestrial orchids. New Phytol 70:41–46

    Google Scholar 

  • Warcup JH (1991) The Rhizoctonia endophytes of Rhizanthella. Mycol Res 95:656–659

    Google Scholar 

  • Waterman RJ, Bidartondo MI (2008) Deception above, deception below: linking pollination and mycorrhizal biology of orchids. J Exp Bot 59:1085–1096

    PubMed  CAS  Google Scholar 

  • Waterman RJ, Bidartondo MI, Stofberg J, Combs JK, Gebauer G, Savolainen V, Barraclough TG, Pauw A (2011) The effects of above- and belowground mutualisms on orchid speciation and coexistence. Am Nat 177:E54–E68

    PubMed  Google Scholar 

  • Watkinson JI, Welbaum GE (2003) Characterization of gene expression in roots of Cypripedium parviflorum var. pubescens incubated with a mycorrhizal fungus. Acta Hortic 624:463–470

    CAS  Google Scholar 

  • Weiß M, Selosse M-A, Rexer K-H, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomyctes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    PubMed  Google Scholar 

  • Weiß M, Sýkorová Z, Garnica S, Riess K, Martos F, Krause C, Oberwinkler F, Bauer R, Redecker D (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One 6(2):e16793. doi:10.1371/journal.pone.0016793

    PubMed  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Google Scholar 

  • Wright M (2007) Maximising the effectiveness of mycorrhizal fungi in the conservation of Caladenia taxa (Orchidaceae). PhD thesis, University of Melbourne, Melbourne

    Google Scholar 

  • Wright MM, Cross R, Dixon K, Huynh T, Lawrie A, Nesbitt L, Pritchard A, Swarts N, Thomson R (2009) Propagation and introduction of Caladenia. Aust J Bot 57:373–387

    Google Scholar 

  • Wright MM, Cross R, Cousens RD, May TW, McLean CB (2010) Taxonomic and functional characterization of fungi from the Sebacina vermifera complex from common and rare orchids in the genus Caladenia. Mycorrhiza 20:375–390

    PubMed  Google Scholar 

  • Xu JT, Guo SX (2000) Retrospect on the research of the cultivation of Gastrodia elata Bl, a rare traditional Chinese medicine. Chin Med J 113:686–692

    PubMed  CAS  Google Scholar 

  • Yagame T, Yamato M, Mii M, Suzuki A, Iwase K (2007) Developmental processes of achlorophyllous orchid, Epipogium roseum: from seed germination to flowering under symbiotic cultivation with mycorrhizal fungus. J Plant Res 120:229–236

    PubMed  Google Scholar 

  • Yagame T, Yamato M, Suzuki A, Iwase K (2008) Ceratobasidiaceae mycorrhizal fungi isolated from nonphotosynthetic orchid Chamaegastrodia sikokiana. Mycorrhiza 18:97–101

    PubMed  Google Scholar 

  • Yagame T, Orihara T, Selosse M-A, Yamato M, Iwase K (2012) Mixotrophy of Platanthera minor, an orchid associated with ectomycorrhiza-forming Ceratobasidiaceae fungi. New Phytol 193:178–187

    PubMed  CAS  Google Scholar 

  • Yamato M, Yagame T, Suzuki A, Iwase K (2005) Isolation and identification of mycorrhizal fungi associating with an achlorophyllous plant, Epipogium roseum (Orchidaceae). Mycoscience 46:73–77

    CAS  Google Scholar 

  • Yoder JA, Zettler LW, Stewart SL (2000) Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Sci 156:145–150

    PubMed  CAS  Google Scholar 

  • Yuan L, Yang ZL, Li SY, Hu H, Huang J-L (2010) Mycorrhizal specificity, preference and plasticity of six slipper orchids from South Western China. Mycorrhiza 20:559–568

    PubMed  Google Scholar 

  • Yukawa T, Ogura-Tsujita Y, Shefferson RP, Yokoyama J (2009) Mycorrhizal diversity in Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza. Am J Bot 96:1997–2009

    PubMed  Google Scholar 

  • Zettler LW, Poulter SB, McDonald KI, Stewart SL (2007) Conservation-driven propagation of an epiphytic orchid (Epidendrum nocturnum) with a mycorrhizal fungus. HortScience 42:135–139

    Google Scholar 

  • Zhu GS, Yu ZN, Gui Y, Liu ZY (2008) A novel technique for isolating orchid mycorrhizal fungi. Fungal Divers 33:123–137

    Google Scholar 

  • Zimmer K, Hynson NA, Gebauer G, Allen EB, Allen MF, Read DJ (2007) Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytol 175:166–175

    PubMed  CAS  Google Scholar 

  • Zotz G, Schmidt G (2006) Population decline in the epiphytic orchid Aspasia principissa. Biol Conserv 129:82–90

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the large number of students and colleagues who have supported their research on orchid mycorrhizas in recent years. J.D. thanks the Australian Orchid Foundation for support of his research. M.-A.S. and F.M. thank the Société Française d’Orchidophile and its members for continuous support and participation in their research programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. W. Dearnaley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dearnaley, J.D.W., Martos, F., Selosse, MA. (2012). 12 Orchid Mycorrhizas: Molecular Ecology, Physiology, Evolution and Conservation Aspects. In: Hock, B. (eds) Fungal Associations. The Mycota, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30826-0_12

Download citation

Publish with us

Policies and ethics