Advertisement

Automated DHM Modeling for Integrated Alpha-Numeric and Geometric Assembly Planning

  • Martin MannsEmail author
  • Néstor Andrés Arteaga Martín
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

Digital Human Model (DHM) simulations are established as alternative to prototype based assembly verification. Prohibitive modeling effort constrains its application to selected tasks. In this work, a novel methodology is introduced to automatically generate DHM assembly simulations from textually planned assembly processes. The methodology is based on the software ema, which employs a human movement database mapped to building blocks. The methodology is evaluated using a model for a car interior pre-assembly station at Daimler AG. It is compared to state of the art process verification with prototypes, classical DHM modeling and manual application of ema. Most of the processes can be identified and half of them are realistically modeled. The presented methodology is a promising approach towards automating DHM modeling for process verification. Such a feature could help integrating today’s alpha-numerical process planning to 3D geometric planning because no CAD expertise is required.

Keywords

Assembly planning digital human model simulation controlled natural language 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Michalos, G., Makris, S., Papakostas, N., Mourtzis, D., Chryssolouris, G.: Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach. CIRP Journal of Manufacturing Science and Technology 2(2), 81–91 (2010)CrossRefGoogle Scholar
  2. 2.
    Weber, J.: Automotive Development Processes - Processes for Successful Customer Oriented Vehicle Development. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Fritzsche, L., Jendrusch, R., Leidholdt, W., Bauer, S., Jäckel, T., Pirger, A.: Introducing ema (Editor for Manual Work Activities) – A New Tool for Enhancing Accuracy and Efficiency of Human Simulations in Digital Production Planning. In: Duffy, V.G. (ed.) ICDHM 2011. LNCS, vol. 6777, pp. 272–281. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Min, J., Chai, J.: Motion graphs++: a compact generative model for semantic motion analysis and synthesis. In: ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH Asia 2012 TOG (2011)Google Scholar
  5. 5.
    Chryssolouris, G.: Manufacturing Systems: Theory and Practice, 2nd edn. Springer Science-i-Business Media, Inc., New York (2006)Google Scholar
  6. 6.
    Eversheim, W., Bochtler, W., Laufenberg, L.: Simultaneous engineering. Springer, Berlin (1995)Google Scholar
  7. 7.
    Derichs, T.: Informationsmanagement im Simultaneous Engineering. Shaker Verlag, Aachen (1997)Google Scholar
  8. 8.
    Klauke, S.: Methoden und Datenmodell der ”Offenen Virtuellen Fabrik” zur Optimierung simultaner Produktionsprozesse. VDI-Verlag, Düsseldorf (2002)Google Scholar
  9. 9.
    Lämkull, D., Hanson, L., Örtengren, R.: A comparative study of digital human modelling simulation results and their outcomes in reality: A case study within manual assembly of automobiles. International Journal of Industrial Ergonomics 39(2), 428–441 (2009)CrossRefGoogle Scholar
  10. 10.
    Lockett, J.F., Assmann, E., Green, R., Reed, M.P., Raschke, U., Verriest, J.-P.: Digital Human Modelling Research and Development User Needs Panel. In: 2005 SAE Digital Human Modeling for Design and Engineering Symposium, Iowa-city (2005)Google Scholar
  11. 11.
    DIN 8580, Fertigungsverfahren. DIN Deutsches Normungsinstitut e.V., Beuth Verlag, Berlin, Germany (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Manns
    • 1
    Email author
  • Néstor Andrés Arteaga Martín
    • 1
  1. 1.Daimler AGUlmGermany

Personalised recommendations