Advertisement

Activity-Based Modeling and Analysis of Product Engineering Processes

  • Andreas BraunEmail author
  • Björn Ebel
  • Albert Albers
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

Product engineering processes are subject to increasing complexity. In order to address this problem, various model-based simulation or optimization techniques have been published. However, these techniques are limited to the structure and quality of the data that they work with. In addition, modeling effort needs to be minimized, in order to efficiently support product engineering. In this contribution an approach for the activity-based analysis of product engineering processes is presented. It is intended to support modeling of complex processes with a focus on easy information acquisition. The overall suitability of the approach as well as ways to minimize modeling effort are discussed in two case studies.

Keywords

modeling product engineering process information acquisition Integrated Product Engineering Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, A., Braun, A.: A Generalised Framework to Compass and to Support Complex Product Engineering Processes. J. Prod. Dev. 15(1/2/3), 6–25 (2011)CrossRefGoogle Scholar
  2. 2.
    Suh, N.P.: A Theory of Complexity, Periodicity and the Design Axioms. Res. Eng. Design 11, 116–131 (1999)CrossRefGoogle Scholar
  3. 3.
    Earl, C., Johnson, J., Eckert, C.: Complexity. In: Clarkson, P.J., Eckert, C. (eds.) Design Process Improvement – A Review of Current Practice, pp. 174–197. Springer, London (2005)CrossRefGoogle Scholar
  4. 4.
    Browning, T.R., Fricke, E., Negele, H.: Key Concepts in Modelling Product Development Processes. Syst. Eng. 9(2), 104–128 (2006)CrossRefGoogle Scholar
  5. 5.
    Negele, H., Fricke, E., Schrepfer, L., Härtlein, N.: Modelling of Integrated Product Development Processes. In: 9th Annual Symposium of INCOSE, UK (1999)Google Scholar
  6. 6.
    Albers, A., Lohmeyer, Q., Ebel, B.: Dimensions of Objectives in Interdisciplinary Product Development Projects. In: International Conference on Engineering Design, ICED 2011, Copenhagen, vol. 2, pp. 256–265 (2011)Google Scholar
  7. 7.
    Albers, A., Lohmeyer, Q.: Advanced Systems Engineering - Towards a Model-Based and Human-Centered Methodology. In: International Symposium Series on Tools and Methods of Competitive Engineering, TMCE 2012, Karlsruhe, pp. 407–416 (2012)Google Scholar
  8. 8.
    Ropohl, G.: Einleitung in die Systemtechnik. In: Ropohl, G. (ed.) Systemtechnik – Grundlagen und Antworten. Carl Hanser Verlag, München (1975)Google Scholar
  9. 9.
    Ehrlenspiel, K.: Integrierte Produktentwicklung – Denkabläufe, Methodeneinsatz, Zusammenarbeit, vol. 4. Carl Hanser Verlag, München (2009)CrossRefGoogle Scholar
  10. 10.
    Lindemann, U.: Methodische Entwicklung technischer Produkte – Methoden flexibel und situationsgerecht anwenden. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Wynn, D., Clarkson, P.J.: Models of Designing. In: Clarkson, P.J., Eckert, C. (eds.) Design Process Improvement – A Review of Current Practice, pp. 34–59. Springer, London (2005)CrossRefGoogle Scholar
  12. 12.
    O’Donovan, B., Eckert, C., Clarkson, P.J., Browning, T.R.: Design planning and modeling. In: Clarkson, J., Eckert, C. (eds.) Design Process Improvement – A Review of Current Practice, pp. 60–87. Springer, London (2005)CrossRefGoogle Scholar
  13. 13.
    Hitchins, D.K.: Systems Engineering – A 21st Century Systems Methodology. John Wiley & Sons, West Sussex (2007)Google Scholar
  14. 14.
    Haberfellner, R., deWeck, O., Fricke, E., Vössner, S.: Systems Engineering – Grundlagen und Anwendung. Orell Füssli Verlag, Zürich (2012) Google Scholar
  15. 15.
    Smith, R.P., Eppinger, S.D.: A Predictive Model of Sequential Iteration in Engineering Design. Man. Sci. 43(8), 1104–1120 (1997)zbMATHCrossRefGoogle Scholar
  16. 16.
    Gebala, D.A., Eppinger, S.D.: Methods for Analyzing Design Procedures. ASME Des. Theory & Meth. 31 (1991)Google Scholar
  17. 17.
    Cho, S.-H., Eppinger, S.D.: A Simulation-Based Process Model for Managing Complex Design Projects. IEEE Transactions on Engineering Management 52, 3 (2005)CrossRefGoogle Scholar
  18. 18.
    Wallace, D., Abrahamson, S., Borland, N.: Design Process Elicitation through the Evaluation of Integrated Model Structures. In: Proceedings of DETC 1999. ASME, Las Vegas (1999)Google Scholar
  19. 19.
    Stacey, M., Eckert, C.: An Ethnographic Methodology for Design Process Analysis. In: International Conference on Engineering Design, ICED 1999, Munich (1999)Google Scholar
  20. 20.
    Albers, A., Ebel, B., Lohmeyer, Q.: Systems of Objectives in Complex Product Development. In: International Symposium Series on Tools and Methods of Competitive Engineering, TMCE 2012, Karlsruhe, pp. 267–278 (2012)Google Scholar
  21. 21.
    Albers, A., Braun, A., Muschik, S.: Uniqueness and the Multiple Fractal Character of Product Engineering Processes. In: 1st International Conference on Modelling and Management of Engineering Processes. Springer, London (2010)Google Scholar
  22. 22.
    Albers, A., Burkardt, N., Deigendesch, T., Meboldt, M.: Enabling Key Competencies by Educational Project Work Exemplified by Teamwork and Cooperation. In: International Conference on Engineering and Product Design Education, EPDE 2008, Barcelona (2008)Google Scholar
  23. 23.
    Albers, A., Muschik, S., Braun, A.: Ein Beitrag zum Verständnis des Aktivitätsbegriffs im System der Produktentstehung. In: Tag des Systems Engineering, München (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.IPEK – Institute of Product EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations