Advertisement

A Kinematic Approach for 6-DOF Part Positioning

  • Sajid Ullah ButtEmail author
  • Jean-Francois Antoine
  • Patrick Martin
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

This article proposes a fixturing system consists of a cuboid baseplate located through a 3-2-1 configuration of locators. The locators are mounted on machine table/pallet and posses one axial DOF. The workpiece is mounted on the baseplate and all the elements are assumed to be rigid with zero friction. The positioning error of the workpiece is calculated and the compensation is performed by the axial movement of the locators. The proposed analytical model is verified by the simulation performed in the CAD model.

Keywords

Analytical model Fixturing system Part positioning kinematic model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyle, I., Rong, Y., Brown, D.C.: A review and analysis of current computer-aided fixture design approaches. Robotics and Computer-Integrated Manufacturing 27(1), 1–12 (2011)CrossRefGoogle Scholar
  2. 2.
    Zhang, W.: Flexible fixture design and automation: review, issues and future directions. International Journal of Production Research 39(13) (2001)Google Scholar
  3. 3.
    Butt, S.U., Antoine, J.F., Martin, P.: An Analytical Model for Repositioning of 6 D.O.F Fixturing System. Mechanics & Industry, 13 (2012) (in Press)Google Scholar
  4. 4.
    Ryll, M., Papastathis, T.N., Ratchev, S.: Towards an intelligent fixturing system with rapid reconfiguration and part positioning. Journal of Materials Processing Technology 201, 198–203 (2008)CrossRefGoogle Scholar
  5. 5.
    Li, B., Melkote, S.N.: Improved workpiece location accuracy through fixture layout optimization. International Journal of Machine Tools and Manufacture 39(6), 871–883 (1999)CrossRefGoogle Scholar
  6. 6.
    Somashekar, S.: Fixturing features selection in feature-based systems. Computers in Industry 48(2), 99–108 (2002)CrossRefGoogle Scholar
  7. 7.
    Roy, U., Liao, J.: Fixturing Analysis For Stability Consideration in an Automated Fixture Design System. J. Manuf. Sci. Eng. 124(1), 98–104 (2002)CrossRefGoogle Scholar
  8. 8.
    Wang, M.Y.: Tolerance analysis for fixture layout design. Assembly Automation 22(2), 153–162 (2002)CrossRefGoogle Scholar
  9. 9.
    Bourdet, P.: Logiciels des machines à mesurer tridimensionnelles. Techniques de l’ingénieur. Mesures et contrôle, no. R1316, pp. R1316–1 (1999)Google Scholar
  10. 10.
    Clement, A., Bourdet, P.: A Study of Optimal-Criteria Identification Based on the Small-Displacement Screw Model. CIRP Annals - Manufacturing Technology 37(1), 503–506 (1988)CrossRefGoogle Scholar
  11. 11.
    Villeneuve, F., Legoff, O., Landon, Y.: Tolerancing for manufacturing: a three-dimensional model. International Journal of Production Research 39(8), 1625–1648 (2001)zbMATHCrossRefGoogle Scholar
  12. 12.
    Asante, J.N.: A small displacement torsor model for tolerance analysis in a workpiece-fixture assembly. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 223(8), 1005–1020 (2009)CrossRefGoogle Scholar
  13. 13.
    Jayaram, S., El-Khasawneh, B.S., Beutel, D.E., Merchant, M.E.: A Fast Analytical Method to Compute Optimum Stiffness of Fixturing Locators. CIRP Annals - Manufacturing Technology 49(1), 317–320 (2000)CrossRefGoogle Scholar
  14. 14.
    Raghu, A., Melkote, S.N.: Modeling of workpiece location error due to fixture geometric error and fixture-workpiece compliance. Journal of Manufacturing Science and Engineering 127, 75 (2005)CrossRefGoogle Scholar
  15. 15.
    Hurtado, J.F., Melkote, S.N.: Improved Algorithm for Tolerance-Based Stiffness Optimization of Machining Fixtures. J. Manuf. Sci. Eng. 123(4), 720–730 (2001)CrossRefGoogle Scholar
  16. 16.
    Asante, J.N.: Effect of fixture compliance and cutting conditions on workpiece stability. The International Journal of Advanced Manufacturing Technology 48(1), 33–43 (2010)CrossRefGoogle Scholar
  17. 17.
    Marin, R.A., Ferreira, P.M.: Analysis of the Influence of Fixture Locator Errors on the Compliance of Work Part Features to Geometric Tolerance Specifications. J. Manuf. Sci. Eng. 125(3), 609–616 (2003)CrossRefGoogle Scholar
  18. 18.
    Liao, Y.G., Hu, S.J.: An Integrated Model of a Fixture-Workpiece System for Surface Quality Prediction. The International Journal of Advanced Manufacturing Technology 17, 810–818 (2001)CrossRefGoogle Scholar
  19. 19.
    Hsu, Y.Y., Wang, S.S.: A new compensation method for geometry errors of five-axis machine tools. International Journal of Machine Tools and Manufacture 47(2), 352–360 (2007)CrossRefGoogle Scholar
  20. 20.
    Lin, Y., Shen, Y.-L.: A Generic Kinematic Error Model for Machine Tools. Citeseer (2000)Google Scholar
  21. 21.
    Ahn, K.G., Cho, D.W.: An analysis of the volumetric error uncertainty of a three-axis machine tool by beta distribution. International Journal of Machine Tools and Manufacture 40(15), 2235–2248 (2000)CrossRefGoogle Scholar
  22. 22.
    Choi, J.P., Min, B.K., Lee, S.J.: Reduction of machining errors of a three-axis machine tool by on-machine measurement and error compensation system. Journal of Materials Processing Technology 155, 2056–2064 (2004)CrossRefGoogle Scholar
  23. 23.
    Jha, B.K., Kumar, A.: Analysis of geometric errors associated with five-axis machining centre in improving the quality of cam profile. International Journal of Machine Tools and Manufacture 43(6), 629–636 (2003)CrossRefGoogle Scholar
  24. 24.
    Zhu, S., Ding, G., Qin, S., Lei, J., Zhuang, L., Yan, K.: Integrated geometric error modeling, identification and compensation of CNC machine tools. International Journal of Machine Tools and Manufacture 52(1), 24–29 (2012)CrossRefGoogle Scholar
  25. 25.
    Martin, P., Dantan, J.Y., D’Acunto, A.: Virtual manufacturing: prediction of work piece geometric quality by considering machine and set-up accuracy. International Journal of Computer Integrated Manufacturing 24(7), 610–626 (2011)CrossRefGoogle Scholar
  26. 26.
    Wan, X.-J., Xiong, C.-H., Zhao, C., Wang, X.-F.: A unified framework of error evaluation and adjustment in machining. International Journal of Machine Tools and Manufacture 48(11), 1198–1210 (2008)CrossRefGoogle Scholar
  27. 27.
    Paris, H.: Contribution à la conception automatique des gammes d’usinage: le probléme du posage et du bridge des pièces. Université Joseph Fourier Grenoble (1995)Google Scholar
  28. 28.
    Dursapt, M.: Aide-mémoire métrologie dimensionnelle. Dunod (2009)Google Scholar
  29. 29.
    Bourdet, P., Schneider, F.: Spécification géométrique des produits: cotation & tolé-rancement ISO (Coll. Technique & ingénierie). DUNOD, Paris (2007)Google Scholar
  30. 30.
    zimmer, CPT 12/14 cemented stems (September 2011), http://www.zimmer.co.uk/web/...14_Hip_Syste_97-8114-01_rev_1.pdf
  31. 31.
    Halevi, G., Weill, R.D.: Principles of Process Planning: a Logical approach. Chapman and Hall, London (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sajid Ullah Butt
    • 1
    Email author
  • Jean-Francois Antoine
    • 2
  • Patrick Martin
    • 3
  1. 1.CEMENational University of Sciences and Technology (NUST)IslamabadPakistan
  2. 2.GMP, Le MontetVillers-lès-NancyFrance
  3. 3.LCFC, Art et MètiersMetzFrance

Personalised recommendations