Skip to main content

On the Nature of β-Agostic Interactions: A Comparison Between the Molecular Orbital and Charge Density Picture

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 146))

Abstract

The phenomenon and nature of agostic interactions are reviewed in light of combined molecular orbital and charge density studies. As an introduction a historical perspective is given, illustrating the successes and short falls of the various bonding concepts developed during the past 45 years since the discovery of the phenomenon in transition metal complexes. The finding that β-agostic species might represent stable intermediates along the β-elimination reaction coordinate classifies them as suitable benchmark systems to study the microscopic origin of C–H bond activation processes. We outline the salient electronic parameters that control and quantify the extent of agostic interactions on the basis of physically observable charge density properties. Despite the focus on charge density studies, we also complement these studies with arguments based on molecular orbital theory and an irrefutable body of crystallographic, kinetic, and spectroscopic evidence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is interesting to note that the agostic interaction in this agostic benchmark complex represents a rare example of a so-called γ-agostic [4] interaction. In agostic alkyl complexes of early transition d0 metal complexes, β-agostic interactions are generally stronger than their α- or γ-counterparts. Hence, the first literature example of an agostic transition metal complex already suggests that the nature and strength of an agostic interaction might depend on the electronic situation at the metal center (d-electron count) and that of the ligand (presence of hetero atoms).

  2. 2.

    The term agostic has been introduced by MLH Green and is derived from the Greek word àγοστóζ, which might be translated as to clasp, to draw towards, to hold to oneself; see p. 3. of [8].

  3. 3.

    According to Poater et al., the delocalization indices δ(Ω, Ω′) were calculated from the DFT wavefunctions using an approximate formula that makes use of an HF-like second order exchange density matrix. According to a recent study by Gatti et al. [46], this approximation affords δ(Ω, Ω′) values which are very close to the HF ones if the HF and DFT optimized geometries are similar, although it erroneously implies that the electron pair density matrix can be constructed, within DFT, using the same simple formalism valid for the HF method.

  4. 4.

    Delocalization indices were computed using GTO-type bases of triple-zeta quality and the B3LYP hybrid functional as implemented in Gaussian03 [50].

  5. 5.

    We note that the barrier of methyl group rotation in the d8 species 5a is close to the one computed for our theoretical d0 model system EtTiCl2 + (2.8 kJ mol−1) (Fig. 4) suggesting a comparable agostic stabilization in both types of compounds.

  6. 6.

    On the basis of this concept, β-agostic interactions can be clearly discriminated from σ-complexes formed by metal centers and η2-coordinating X–H moieties (e.g., X = H, B, C, Si). In the latter case, only bonding and antibonding σ(X–H) orbitals are involved in the metal interaction, while β-agostic compounds are characterized by the additional delocalization of the M–Cα bonding pair via negative hyperconjugation.

  7. 7.

    The hindrance of NHC delocalization by charge polarization is documented by a comparison of the situation in [CH2CH3] 12 and [CH2CH3][Li+] 14. The large NHC in 12 vs. 14 is reflected not only by a smaller CCα(1) charge concentration of 16.3 eÅ−5 in 12 but also by a remarkable activation of the Cβ–Hβ bond trans to the Cα lone pair (ca. 0.04 Å) in 12 which is less pronounced in 14 (ca. 0.01 Å). As another consequence, CCα(1) in the agostic [EtCa]+ cation is only slightly smaller (17.8 eÅ−5) compared with the one in the neutral non-agostic lithium congener (18.0 eÅ−5) (Fig. 8).

  8. 8.

    As another consequence of the destabilizing four electron p(Cα)–π(CβHβ) interactions, the ethyl anion is assumed to be less stable than the methyl anion; see [71].

  9. 9.

    Bader et al. have demonstrated that the negative Laplacian of the charge density distribution, L(r) = −∇2 ρ(r), determines where the charge density distribution is locally concentrated (L(r) > 0) or locally depleted (L(r) < 0). Accordingly, the L(r) function can be used to resolve the shell structure for elements with Z ≤ 18. However, the shell structure of the transargonic elements is not fully represented by the Laplacian. In general, the fourth, fifth, or sixth shell for elements of periods 4−6, respectively, is not revealed in the Laplacian. As a convention, Bader et al. suggested that the outermost shell of charge concentration (CC) of an atom (second shell of CC of the carbon atoms and third shell of CC of the nickel atom) represents its (effective) valence shell charge concentration (VSCC).

  10. 10.

    We note that the higher polarity of the Ti–Cl bond is signaled in the charge density picture by the vanishing of the corresponding BCCs in the total charge density distribution in the Ti–Cl bonding region and by a smaller magnitude of trans-CC(Cl) vs. trans-CC(C).

  11. 11.

    As a consequence of the phosphine coordination trans to the Cβ atom, a weakly defined (3, −1) saddle point is formed in the L(r) pattern at the titanium atom along the Ti–Cβ vector. In the experimental charge density distributions, however, a subtle (3, +1) CD zone is preserved opposite to the Cβ atom.

  12. 12.

    Hence, the presence of local Lewis-acidic sites in the coordination region of agostic CβHβ moieties might reflect the presence of d-acceptor orbitals which accommodate the CβHβ → M donation in the MO picture.

  13. 13.

    We note that the relative magnitudes of CCα(1), CCα(2), and CCβ(2) are similar in the experimental and calculated models. However, the experimentally determined charge concentrations appear to be larger than their respective theoretical ones. This might be due to the fact that core contraction/expansion phenomena have not been taken into account during the multipolar refinements [106].

References

  1. Burawoy A (1945) Nature (Lond) 155:269

    CAS  Google Scholar 

  2. Pitzer KS, Gutowsky HS (1946) J Am Chem Soc 68:2204

    CAS  Google Scholar 

  3. La Placa SJ, Ibers JA (1965) Inorg Chem 4:778

    Google Scholar 

  4. Brookhart M, Green MLH (1983) J Organomet Chem 250:395

    CAS  Google Scholar 

  5. Trofimenko S (1967) J Am Chem Soc 89:6288

    CAS  Google Scholar 

  6. Trofimenko S (1968) J Am Chem Soc 90:4754

    CAS  Google Scholar 

  7. Trofimenko S (1970) Inorg Chem 9:2493

    CAS  Google Scholar 

  8. Brookhart M, Green MLH, Wong L-L (1988) Prog Inorg Chem 36:1

    CAS  Google Scholar 

  9. Scheins S, Messerschmidt M, Gembicky M, Pitak M, Volkov A, Coppens P, Harvey BG, Turpin GC, Arif AM, Ernst RD (2009) J Am Chem Soc 131:6154

    CAS  Google Scholar 

  10. Scherer W, McGrady GS (2004) Angew Chem Int Ed 43:1782

    CAS  Google Scholar 

  11. Scherer W, Sirsch P, Shorokhov D, Tafipolsky M, McGrady GS, Gullo E (2003) Chem Eur J 9:6057

    CAS  Google Scholar 

  12. Scherer W, Priermeier T, Haaland A, Volden HV, McGrady GS, Downs AJ, Boese R, Bläser D (1998) Organometallics 17:4406

    CAS  Google Scholar 

  13. Scherer W, Hieringer W, Spiegler M, Sirsch P, McGrady GS, Downs AJ, Haaland A, Pedersen B (1998) Chem Commun:2471

    Google Scholar 

  14. McGrady GS, Downs AJ, Haaland A, Scherer W, McKean DC (1997) J Chem Soc Chem Commun 1997:1547

    Google Scholar 

  15. Haaland A, Scherer W, Ruud K, McGrady GS, Downs AJ, Swang O (1998) J Am Chem Soc 120:3762

    CAS  Google Scholar 

  16. McKean DC, McGrady GS, Downs AJ, Scherer W, Haaland A (2001) Phys Chem Chem Phys 3:2781

    CAS  Google Scholar 

  17. Klooster WT, Brammer L, Schaverien CJ, Budzelaar PM (1999) J Am Chem Soc 121:1381

    CAS  Google Scholar 

  18. Klooster WT, Lu RS, Anwander R, Evans WJ, Koetzle TF, Bau T (1998) Angew Chem Int Ed Engl 37:1268

    CAS  Google Scholar 

  19. Cotton FA, LaCour T, Stanislowski AG (1974) J Am Chem Soc 96:754

    CAS  Google Scholar 

  20. Zerger R, Rhine W, Stucky G (1974) J Am Chem Soc 96:6048

    CAS  Google Scholar 

  21. Kaufmann E, Raghavachari K, Reed AE, Schleyer PvR (1988) Organometallics 7:1597

    CAS  Google Scholar 

  22. Dawoodi Z, Green MLH, Mtetwa VSB, Prout K (1982) J Chem Soc Chem Commun:1410

    Google Scholar 

  23. Dawoodi Z, Green MLH, Mtetwa VSB, Prout K, Schultz AJ, Williams JM, Koetzle TF (1986) J Chem Soc Dalton Trans:1629

    Google Scholar 

  24. Crabtree RH, Hamilton DG (1988) Adv Organomet Chem 28:299

    CAS  Google Scholar 

  25. Conroy-Lewis FM, Mole L, Redhouse AD, Litster SA, Spencer JL (1991) J Chem Soc Chem Commun:1601

    Google Scholar 

  26. Scherer W, Herz V, Brück A, Hauf Ch, Reiner F, Altmannshofer S, Leusser D, Stalke D (2011) Angew Chem Int Ed 50:2845

    CAS  Google Scholar 

  27. Calvert RB, Shapley JRJ (1978) Am Chem Soc 100:7726

    CAS  Google Scholar 

  28. Okuda J, Eberle T, Spaniol TP (1997) Chem Ber 130:209

    CAS  Google Scholar 

  29. Sinnema P-J, van der Veen L, Spek AL, Veldman N, Teuben JH (1997) Organometallics 16:4245

    CAS  Google Scholar 

  30. Carr N, Dunne BJ, Mole L, Orpen AG, Spencer JL (1991) J Chem Soc Dalton Trans:863

    Google Scholar 

  31. ADF2009.01, SCM, Theoretical Chemistry. Vrije Universiteit, Amsterdam. http://www.scm.com

  32. Te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler T (2001) J Comput Chem 22:931, and references quoted therein

    CAS  Google Scholar 

  33. Becke AD (1988) Phys Rev A 38:3098

    CAS  Google Scholar 

  34. Perdew JP (1986) Phys Rev B 33:8822

    Google Scholar 

  35. Krykunov M, Ziegler T, Lenthe E (2009) J Phys Chem A 113:11495

    CAS  Google Scholar 

  36. Bader RFW, Matta C (2004) Organometallics 23:6253

    CAS  Google Scholar 

  37. Bader RFW (1998) J Phys Chem 102:7314

    CAS  Google Scholar 

  38. Popelier PLA, Logothetis G (1998) J Organomet Chem 555:101

    CAS  Google Scholar 

  39. Bader RFW, Tal Y, Anderson SG, Nguyen-Dang TT (1980) Isr J Chem 19:8

    CAS  Google Scholar 

  40. Tal Y, Bader RFW, Nguyen-Dang TT, Ojha M, Anderson SG (1981) J Chem Phys 74:5162

    CAS  Google Scholar 

  41. Pantazis DA, McGrady JE, Besora M, Maseras F, Etienne M (2008) Organometallics 27:1128

    CAS  Google Scholar 

  42. Etienne M, McGrady JE, Maseras F (2009) Coord Chem Rev 253:635

    CAS  Google Scholar 

  43. Thakur TS, Desiraju GR (2007) Theochem 810:143

    CAS  Google Scholar 

  44. Vidal I, Melchor S, Alkorta I, Elguero J, Sundberg MR, Dobado JA (2006) Organometallics 25:5638

    CAS  Google Scholar 

  45. Poater J, Solà M, Duran M, Fradera X (2002) Theor Chem Acta 107:362

    CAS  Google Scholar 

  46. Gatti C, Lasi D (2007) Faraday Discuss 135:55

    CAS  Google Scholar 

  47. Abramov YA (1997) Acta Crystallogr A53:264

    CAS  Google Scholar 

  48. Macchi P, Sironi A (2007) In: Matta CF, Boyd RJ (eds) The quantum theory of atoms in molecules. Wiley, Weinheim, pp 364–367

    Google Scholar 

  49. McGrady GS, Sirsch P, Chatterton NP, Ostermann A, Gatti C, Altmannshofer S, Herz V, Eickerling G, Scherer W (2009) Inorg Chem 48:1588

    CAS  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 Revision B.03

    Google Scholar 

  51. Mole L, Spencer JL, Carr N, Orpen AG (1991) Organometallics 10:49

    CAS  Google Scholar 

  52. Brookhart M, Green MLH, Parkin G (2007) Proc Natl Acad Sci USA 104:6908

    CAS  Google Scholar 

  53. Mitoraj MP, Michalak A, Ziegler T (2009) Organometallics 28:3272

    Google Scholar 

  54. Scherer W, Sirsch P, Grosche M, Spiegle M, Mason SA, Gardiner MG (2001) Chem Commun:2072

    Google Scholar 

  55. Scherer W, Sirsch P, Shorokhov D, McGrady GS, Mason SA, Gardiner M (2002) Chem Eur J 8:2324

    CAS  Google Scholar 

  56. Scherer W, Eickerling G, Tafipolsky M, McGrady GS, Sirsch P, Chatterton NP (2006) Chem Commun:2986

    Google Scholar 

  57. Chatt J, Duncanson LA (1953) J Chem Soc:2939

    Google Scholar 

  58. Dewar MJS (1951) Bull Soc Chim Fr 18:C71

    Google Scholar 

  59. Macchi P, Proserpio DM, Sironi A (1998) J Am Chem Soc 120:1447

    CAS  Google Scholar 

  60. Scherer W, Eickerling G, Shorokhov D, Gullo E, McGrady GS, Sirsch P (2006) New J Chem 30:309

    CAS  Google Scholar 

  61. Frenking G, Fröhlich N (2000) Chem Rev 100:717

    CAS  Google Scholar 

  62. Overgaard J, Clausen HF, Platts JA, Iversen BB (2008) J Am Chem Soc 130:3834–3843

    CAS  Google Scholar 

  63. Sparkes HA, Brayshaw SK, Weller AS, Howard JAK (2008) Acta Cryst B64:550–557

    Google Scholar 

  64. Reisinger A, Trapp N, Krossing I, Altmannshofer S, Herz V, Presnitz M, Scherer W (2007) Angew Chem Int Ed 46:8295

    CAS  Google Scholar 

  65. Krapp A, Frenking G (2008) Angew Chem Int Ed 47:7796

    CAS  Google Scholar 

  66. Himmel D, Trapp N, Krossing I, Altmannshofer S, Herz V, Eickerling G, Scherer W (2008) Angew Chem Int Ed 47:7798

    CAS  Google Scholar 

  67. Farrugia LJ, Evans C, Lentz D, Roemer M (2009) J Am Chem Soc 131:1251

    CAS  Google Scholar 

  68. Eliel EL (1972) Angew Chem Int Ed Engl 11:739

    CAS  Google Scholar 

  69. Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York

    Google Scholar 

  70. Roberts JD, Webb RL, McElhill EA (1950) J Am Chem Soc 72:408

    CAS  Google Scholar 

  71. Schleyer PvR, Kos AJ (1983) Tetrahedron 39:1141

    CAS  Google Scholar 

  72. Reed AE, Schleyer PvR (1990) J Am Chem Soc 112:1434

    CAS  Google Scholar 

  73. Bader RFW, Slee TS, Cremer D, Kraka E (1983) J Am Chem Soc 105:5061

    CAS  Google Scholar 

  74. Cremer D, Kraka E, Slee TS, Bader RFW, Lau CDH, Nguyen-Dang TT, MacDougall PJ (1983) J Am Chem Soc 105:5069

    CAS  Google Scholar 

  75. Eisenstein O, Jean Y (1985) J Am Chem Soc 107:1177

    CAS  Google Scholar 

  76. Clot E, Eisenstein O (2004) Struct Bonding 113:1

    CAS  Google Scholar 

  77. Kocher N, Leusser D, Murso A, Stalke D (2004) Chem Eur J 10:3622

    CAS  Google Scholar 

  78. Kocher N, Selinka C, Leusser D, Kost D, Kalikhman I, Stalke D (2004) Z Anorg Allg Chem 630:1777

    CAS  Google Scholar 

  79. Ott H, Pieper U, Leusser D, Flierler U, Henn J, Stalke D (2009) Angew Chem Int Ed 48:2978

    CAS  Google Scholar 

  80. Ott H, Däschlein C, Leusser D, Schildbach D, Seibel T, Stalke D, Strohmann C (2008) J Am Chem Soc 130:11901

    CAS  Google Scholar 

  81. Tafipolsky M, Scherer W, Öfele K, Artus G, Pedersen B, Herrmann WA, McGrady GS (2002) J Am Chem Soc 124:5865

    CAS  Google Scholar 

  82. Scherer W, Tafipolsky M, Öfele K (2008) Inorg Chim Acta 361:513

    CAS  Google Scholar 

  83. Cheeseman JR, Carroll MT, Bader RFW (1988) Chem Phys Lett 143:450

    CAS  Google Scholar 

  84. Hartwig JF (1996) J Am Chem Soc 118:7010

    CAS  Google Scholar 

  85. Tsai Y-C, Johnson MJA, Mindiola DJ, Cummins CC, Klooster WT, Koetzle TF (1999) J Am Chem Soc 121:10426

    CAS  Google Scholar 

  86. Cai H, Chen T, Wang X, Schultz AJ, Koetzle TF, Xue Z (2002) Chem Commun:230

    Google Scholar 

  87. Matas I, Cámpora J, Palma P, Álvarez E (2009) Organometallics 28:6515

    CAS  Google Scholar 

  88. Allen FH (2002) Acta Cryst B58:380

    CAS  Google Scholar 

  89. Pupi RM, Coalter JN, Petersen JL (1995) J Organomet Chem 497:17

    CAS  Google Scholar 

  90. Scherer W, Wolstenholme DJ, Herz V, Eickerling G, Brück A, Benndorf P, Roesky PW (2010) Angew Chem Int Ed 49:2242

    CAS  Google Scholar 

  91. Pillet S, Wu G, Kulsomphob V, Harvey BG, Ernst RD, Coppens P (2003) J Am Chem Soc 125:1937

    CAS  Google Scholar 

  92. Wolstenholme DJ, Traboulsee KT, Decken A, McGrady GS (2010) Organometallics 29:5769

    CAS  Google Scholar 

  93. Forster TD, Tuononen HM, Parvez M, Roesler R (2009) J Am Chem Soc 131:6689

    CAS  Google Scholar 

  94. Papasergio I, Raston CL, White AH (1983) J Chem Soc Chem Commun:1419

    Google Scholar 

  95. Armstrong DR, Mulvey, RE, Walker GT, Barr D, Snaith R, Clegg W, Reed D (1988) J Chem Soc Dalton Trans:617

    Google Scholar 

  96. Perrin L, Maron L, Eisenstein O (2003) Faraday Discuss 124:25

    CAS  Google Scholar 

  97. Perrin L, Maron L, Eisenstein O, Lappert MF (2003) New J Chem 27:121

    CAS  Google Scholar 

  98. Klimpel MG, Anwander R, Tafipolsky M, Scherer W (2001) Organometallics 20:3983

    CAS  Google Scholar 

  99. Eppinger J, Spiegler M, Hieringer W, Herrmann WA, Anwander R (2000) J Am Chem Soc 122:3080

    CAS  Google Scholar 

  100. McGrady GS, Haaland A, Verne HP, Volden HV, Downs AJ, Shorokhov D, Eickerling G, Scherer W (2005) Chem Eur J 11:4921

    CAS  Google Scholar 

  101. Bader RFW, MacDougall PJ, Lau CDH (1984) J Am Chem Soc 106:1594

    CAS  Google Scholar 

  102. Weinhold F, Landis CR (2001) Chem Educ Res Pract Eur 2:91

    CAS  Google Scholar 

  103. Bader RFW, Gillespie RJ, Martín F (1998) Chem Phys Lett 290:488

    CAS  Google Scholar 

  104. Bytheway I, Gillespie RJ, Tang T-H, Bader RFW (1995) Inorg Chem 34:2407

    CAS  Google Scholar 

  105. Gillespie RJ, Robinson EA (1996) Angew Chem Int Ed Engl 35:495

    CAS  Google Scholar 

  106. Fischer A, Tiana D, Scherer W, Batke K, Eickerling G, Svendsen H, Bindzus N, Iversen BB (2011) J Phys Chem A 115:13061

    CAS  Google Scholar 

  107. Adamo C, Barone V (1999) J Chem Phys 110:6158

    CAS  Google Scholar 

  108. Lein M (2009) Coord Chem Rev 253:625

    CAS  Google Scholar 

  109. Poater A, Solans-Monfort X, Clot E, Copéret Ch, Eisenstein O (2006) Dalton Trans:3077

    Google Scholar 

  110. Solans-Monfort X, Eisenstein O (2006) Polyhedron 25:339

    CAS  Google Scholar 

  111. Emsley JW, Feeney J, Sutcliffe LH (1966) High-resolution NMR spectroscopy, vol 2. Pergamon, Oxford, pp 825–826

    Google Scholar 

  112. Harney MB, Keaton RJ, Fettinger C, Sita LR (2006) J Am Chem Soc 128:3420

    CAS  Google Scholar 

  113. Sauriol F, Sonnenberg JF, Chadder SJ, Dunlop-Brière AF, Baird MC, Budzelaar PHM (2010) J Am Chem Soc 132:13357

    CAS  Google Scholar 

  114. Ruiz-Morales Y, Schreckenbach G, Ziegler T (1996) Organometallics 15:3920

    CAS  Google Scholar 

  115. Gatti C, Ponti A, Gamba A, Pagani G (1992) J Am Chem Soc 114:8634

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the DFG (SPP1178) and NanoCat (an international Graduate Program within the Elitenetzwerk Bayern)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Scherer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scherer, W., Herz, V., Hauf, C. (2012). On the Nature of β-Agostic Interactions: A Comparison Between the Molecular Orbital and Charge Density Picture. In: Stalke, D. (eds) Electron Density and Chemical Bonding I. Structure and Bonding, vol 146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30802-4_77

Download citation

Publish with us

Policies and ethics