Skip to main content

Measurement of the \(ZZ\) and \(WZ\) Production Cross Sections

  • Chapter
  • First Online:
  • 299 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In order to eliminate subjective bias in our analysis method, we performed a blind analysis. Selection requirements and analysis techniques were optimised based on MC expectation in the signal regions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The data analysis starts from a skim of the dataset that is commonly used for analysing \(e\mu \) final states. Unfortunately, this skim requires a CC or EC electron. These requirements were defined before the development of electron identification in the IC region.

  2. 2.

    We use the CP version of the code and grid files.

  3. 3.

    This is also convenient since the available \(Z/\gamma ^{*} \rightarrow \tau ^+\tau ^- \) MC samples are relatively small (see Sect. 7.2) and could potentially introduce unsightly statistical fluctuations at the selected signal candidate stage of the analysis.

  4. 4.

    An alternative approach would have been to require that one of the muons assigned as a \(Z/\gamma ^{*}\) daughter is matched to a single muon trigger, thus eliminating trigger bias altogether (to a good approximation at least). This would result in a \(\approx \)20 % reduction in signal acceptance in the \(Z/\gamma ^{*} \rightarrow \mu ^+\mu ^- \) channels. Given that correcting the bias does not introduce any significant uncertainty, the inclusive trigger approach is clearly the better option.

  5. 5.

    Since the systematic uncertainties are small compared to the statistical uncertainties, it is not considered necessary to evaluate two-sided variations. This saves a considerable amount of computing time.

  6. 6.

    It should be noted that some of the other measurements are translated into pure \(ZZ\) or \(WZ\) cross sections. The previous D0 analysis of the \(ZZ/\gamma ^{*} \rightarrow \nu \bar{\nu }\ell ^+\ell ^- \) process used the MCFM [17] program to estimate a correction factor of 3.4 % that converts a \(ZZ/\gamma ^{*} \) cross section into a pure \(ZZ/\gamma ^{*} \) cross section. Considering the overall uncertainties, such details do not significantly affect the comparison with previous measurements. These previous measurements are also discussed in Chap. 1.

References

  1. T. Sjostrand, Comput. Phys. Commun. 135, 238 (2001)

    Article  ADS  Google Scholar 

  2. M.L. Mangano, JHEP 07, 001 (2003)

    Article  ADS  Google Scholar 

  3. V.M. Abazov et al., Phys. Rev. D 78, 072002 (2008)

    Article  ADS  Google Scholar 

  4. V.M. Abazov et al., Phys. Lett. B 695, 67 (2011)

    Article  ADS  Google Scholar 

  5. C. Balazs, C.-P. Yuan, Phys. Rev. D 56, 5558–5583 (1997)

    Article  ADS  Google Scholar 

  6. P. Nason, JHEP 0411, 40 (2004)

    Article  ADS  Google Scholar 

  7. S. Frixione, P. Nason, C. Oleari, JHEP 0711, 70 (2007)

    Article  ADS  Google Scholar 

  8. K. DeVaughan et al., D0 Note 5801, D0, 2008

    Google Scholar 

  9. M. Cooke et al., D0 Note 6031, D0, 2010

    Google Scholar 

  10. B. Calpas, J. Kraus, T. Yasuda, D0 Note 6051, D0, 2010

    Google Scholar 

  11. M. Vesterinen, D0 Note 6018, D0, 2011

    Google Scholar 

  12. K. Nakamura et al., J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  13. A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss, CERN-OPEN 007, 2007

    Google Scholar 

  14. J.D. Hobbs, T. Nunnemann, R. Van Kooten, Study of \(p\bar{p}\) \(\rightarrow \) \(z/\gamma ^*\) \(\rightarrow \) \(ee\) and \(\mu \mu \) event yields as a luminosity cross check. D0 note 5268, D0, 2006

    Google Scholar 

  15. R. Hamburg, W.L. van Neerven, T. Matsuura, Nucl. Phys. B 359, 343 (1991)

    Article  ADS  Google Scholar 

  16. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Phys. Lett. B 604, 61 (2004)

    Article  ADS  Google Scholar 

  17. J.M. Campbell, R.K. Ellis, Phys. Rev. D 60, 113006 (2009)

    Article  ADS  Google Scholar 

  18. A. Martin, W. Stirling, R. Thorne, G. Watt, Parton distributions for the lhc. Eur. Phys. J. C 63, 189–285 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Vesterinen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vesterinen, M. (2012). Measurement of the \(ZZ\) and \(WZ\) Production Cross Sections. In: Z Boson Transverse Momentum Distribution, and ZZ and WZ Production. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30788-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30788-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30787-4

  • Online ISBN: 978-3-642-30788-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics