Skip to main content

Palatal Wound Healing: The Effects of Scarring on Growth

  • Chapter
  • First Online:
Cleft Lip and Palate

Abstract

Cleft palate patients often develop growth disturbances of the midfacial region after primary surgery. This is mainly caused by wound contraction and scar formation on the palate. The chapter gives an overview of the wound healing process with emphasis on wound contraction and scar formation. Some specific features of the palatal wound healing process are highlighted. Further, the effects of palatal repair on growth of the maxilla and development of the dentition are reviewed, as well as possible means to improve the clinical outcome. This review is based on clinical evaluations, experimental research in animal models, and on in vitro experiments using cell culturing and tissue engineering techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • al-Khateeb T, Stephens P, Shepherd JP, Thomas DW (1997) An investigation of preferential fibroblast wound repopulation using a novel in vitro wound model. J Periodontol 68(11):1063–1069

    Article  PubMed  CAS  Google Scholar 

  • Bardach J (1989) Lip repair and facial growth in beagles. Plast Reconstr Surg 83(6):1079–1080

    PubMed  CAS  Google Scholar 

  • Bardach J (1990) The influence of cleft lip repair on facial growth. Cleft Palate J 27(1):76–78

    Article  PubMed  CAS  Google Scholar 

  • Bardach J, Eisbach KJ (1977) The influence of primary unilateral cleft lip repair on facial growth. Cleft Palate J 14(1):88–97

    PubMed  CAS  Google Scholar 

  • Bardach J, Klausner EC, Eisbach KJ (1979) The relationship between lip pressure and facial growth after cleft lip repair: an experimental study. Cleft Palate J 16(2):137–146

    PubMed  CAS  Google Scholar 

  • Bardach J, Roberts DM, Yale R, Rosewall D, Mooney M (1980) The influence of simultaneous cleft lip and palate repair on facial growth in rabbits. Cleft Palate J 17(4):309–318

    PubMed  CAS  Google Scholar 

  • Bardach J, Kelly KM, Salyer KE (1993) A comparative study of facial growth following lip and palate repair performed in sequence and simultaneously: an experimental study in beagles. Plast Reconstr Surg 91(6):1008–1016

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz S (1977) Cleft lip and palate research: an updated state of the art. Section III. Orofacial growth and dentistry. Cleft Palate J 14(4):288–301

    PubMed  CAS  Google Scholar 

  • Bodner L, Grossman N (2003) Autologous cultured mucosal graft to cover large intraoral mucosal defects: a clinical study. J Oral Maxillofac Surg 61(2):169–173

    Article  PubMed  Google Scholar 

  • Bourke KA, Haase H, Li H, Daley T, Bartold PM (2000) Distribution and synthesis of elastin in porcine gingiva and alveolar mucosa. J Periodontal Res 35(6):361–368

    Article  PubMed  CAS  Google Scholar 

  • Butler CE, Navarro FA, Park CS, Orgill DP (2002) Regeneration of neomucosa using cell-seeded collagen-GAG matrices in athymic mice. Ann Plast Surg 48(3):298–304

    Article  PubMed  Google Scholar 

  • Capelozza Filho L, Normando AD, da Silva Filho OG (1996) Isolated influences of lip and palate surgery on facial growth: comparison of operated and unoperated male adults with UCLP. Cleft Palate Craniofac J 33(1):51–56

    Article  PubMed  CAS  Google Scholar 

  • Chu S, Ishikawa H, Kim T, Yoshida S (2000) Analysis of scar tissue distribution on rat palates: a laser Doppler flowmetric study. Cleft Palate Craniofac J 37(5):488–496

    Article  PubMed  CAS  Google Scholar 

  • Clark RAF (1996) Wound repair: overview and general considerations. In: Clark RAF (ed) The molecular and cellular biology of wound healing. Plenum Press, New York, pp 3–35

    Google Scholar 

  • Cooper ML, Andree C, Hansbrough JF, Zapata-Sirvent RL, Spielvogel RL (1993) Direct comparison of a cultured composite skin substitute containing human keratinocytes and fibroblasts to an epidermal sheet graft containing human keratinocytes on athymic mice. J Invest Dermatol 101(6):811–819

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen AM, Maltha JC, Von den Hoff HW, Kuijpers-Jagtman AM (1999) Palatal mucoperiosteal wound healing in the rat. Eur J Oral Sci 107(5):344–351

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen AM, Maltha JC, Von den Hoff JW, Kuijpers-Jagtman AM (2000a) Local injection of IFN-gamma reduces the number of myofibroblasts and the collagen content in palatal wounds. J Dent Res 79(10):1782–1788

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen AM, Stoop R, Von den Hoff HW, Maltha JC, Kuijpers-Jagtman AM (2000b) Myofibroblasts and matrix components in healing palatal wounds in the rat. J Oral Pathol Med 29(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Dahl E (1970) Craniofacial morphology in congenital clefts of the lip and palate. An x-ray cephalometric study of young adult males. Acta Odontol Scand 28(Suppl 57):11+

    PubMed  Google Scholar 

  • Derijcke A, Kuijpers-Jagtman AM, Lekkas C, Hardjowasito W, Latief B (1994) Dental arch dimensions in unoperated adult cleft-palate patients: an analysis of 37 cases. J Craniofac Genet Dev Biol 14(1):69–74

    PubMed  CAS  Google Scholar 

  • Desmouliere A, Gabbiani G (1996) The role of the myofibroblast in wound healing and fibrocontractive diseases. In: Clark RAF (ed) The molecular and cellular biology of wound healing. Plenum Press, New York, pp 391–414

    Google Scholar 

  • Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146(1):56–66

    PubMed  CAS  Google Scholar 

  • Duncan MR, Hasan A, Berman B (1995) Pentoxifylline, pentifylline, and interferons decrease type I and III procollagen mRNA levels in dermal fibroblasts: evidence for mediation by nuclear factor 1 down-regulation. J Invest Dermatol 104(2):282–286

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich HP, Rajaratnam JB (1990) Cell locomotion forces versus cell contraction forces for collagen lattice contraction: an in vitro model of wound contraction. Tissue Cell 22(4):407–417

    Article  PubMed  CAS  Google Scholar 

  • El Ghalbzouri A, Hensbergen P, Gibbs S, Kempenaar J, van der Schors R, Ponec M (2004) Fibroblasts facilitate re-epithelialization in wounded human skin equivalents. Lab Invest 84(1):102–112

    Article  PubMed  CAS  Google Scholar 

  • Fujioka M, Fujii T (1997) Maxillary growth following atelocollagen implantation on mucoperiosteal denudation of the palatal process in young rabbits: implications for clinical cleft palate repair. Cleft Palate Craniofac J 34(4):297–308

    Article  PubMed  CAS  Google Scholar 

  • Funato N, Moriyama K, Baba Y, Kuroda T (1999) Evidence for apoptosis induction in myofibroblasts during palatal mucoperiosteal repair. J Dent Res 78(9):1511–1517

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200(4):500–503

    Article  PubMed  CAS  Google Scholar 

  • Graber TM (1949) Craniofacial morphology in cleft palate and cleft lip deformities. Surg Gynecol Obstet 88(3):359–369

    PubMed  CAS  Google Scholar 

  • Granstein RD, Deak MR, Jacques SL, Margolis RJ, Flotte TJ, Whitaker D, Long FH, Amento EP (1989) The systemic administration of gamma interferon inhibits collagen synthesis and acute inflammation in a murine skin wounding model. J Invest Dermatol 93(1):18–27

    Article  PubMed  CAS  Google Scholar 

  • Graves DT, Nooh N, Gillen T, Davey M, Patel S, Cottrell D, Amar S (2001) IL-1 plays a critical role in oral, but not dermal, wound healing. J Immunol 167(9):5316–5320

    PubMed  CAS  Google Scholar 

  • Grinnell F (1994) Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 124(4):401–404

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Chang TR, Aggarwal A, Lee RC, Ehrlich HP (1993) Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann Biomed Eng 21(3):289–305

    Article  PubMed  CAS  Google Scholar 

  • Igarashi M, Irwin CR, Locke M, Mackenzie IC (2003) Construction of large area organotypical cultures of oral mucosa and skin. J Oral Pathol Med 32(7):422–430

    Article  PubMed  CAS  Google Scholar 

  • In de Braekt MM, van Alphen FA, Kuijpers-Jagtman AM, Maltha JC (1992) Wound healing and wound contraction after palatal surgery and implantation of poly-(L-lactic) acid membranes in beagle dogs. J Oral Maxillofac Surg 50(4):359–364; discussion 365–356

    Article  Google Scholar 

  • Irwin CR, Myrillas T, Smyth M, Doogan J, Rice C, Schor SL (1998) Regulation of fibroblast-induced collagen gel contraction by interleukin-1beta. J Oral Pathol Med 27(6):255–259

    Article  PubMed  CAS  Google Scholar 

  • Izumi K, Feinberg SE, Iida A, Yoshizawa M (2003) Intraoral grafting of an ex vivo produced oral mucosa equivalent: a preliminary report. Int J Oral Maxillofac Surg 32(2):188–197

    Article  PubMed  CAS  Google Scholar 

  • Jansen RG, van Kuppevelt TH, Daamen WF, Kuijpers-Jagtman AM, Von den Hoff JW (2009) FGF-2-loaded collagen scaffolds attract cells and blood vessels in rat oral mucosa. J Oral Pathol Med 38(8):630–638

    Article  PubMed  CAS  Google Scholar 

  • Kaban LB, Dodson TB, Longaker MT, Stern M, Umeda H, Adzick S (1993) Fetal cleft lip repair in rabbits: long-term clinical and cephalometric results. Cleft Palate Craniofac J 30(1):13–21

    Article  PubMed  CAS  Google Scholar 

  • Kanda T, Funato N, Baba Y, Kuroda T (2003) Evidence for fibroblast growth factor receptors in myofibroblasts during palatal mucoperiosteal repair. Arch Oral Biol 48(3):213–221

    Article  PubMed  CAS  Google Scholar 

  • Kim T, Ishikawa H, Chu S, Handa A, Iida J, Yoshida S (2002) Constriction of the maxillary dental arch by mucoperiosteal denudation of the palate. Cleft Palate Craniofac J 39(4):425–431

    Article  PubMed  Google Scholar 

  • Kremenak CR Jr, Huffman WC, Olin WH (1970) Maxillary growth inhibition by mucoperiosteal denudation of palatal shelf bone in non-cleft beagles. Cleft Palate J 7:817–825

    PubMed  Google Scholar 

  • Kuijpers-Jagtman AM, Long RE Jr (2000) State of the art: the influence of surgery and orthopedic treatment on maxillofacial growth and maxillary arch dimensions in patients treated for orofacial clefts. Cleft Palate Craniofac J 37:527/1–527/12

    Google Scholar 

  • Lambrecht JT, Kreusch T, Schulz L (2000) Position, shape, and dimension of the maxilla in unoperated cleft lip and palate patients: review of the literature. Clin Anat 13(2):121–133

    Article  PubMed  CAS  Google Scholar 

  • Lee HG, Eun HC (1999) Differences between fibroblasts cultured from oral mucosa and normal skin: implication to wound healing. J Dermatol Sci 21(3):176–182

    Article  PubMed  CAS  Google Scholar 

  • Leenstra TS, Kuijpers-Jagtman AM, Maltha JC, Freihofer HP (1995a) Palatal surgery without denudation of bone favours dentoalveolar development in dogs. Int J Oral Maxillofac Surg 24(6):440–444

    Article  PubMed  CAS  Google Scholar 

  • Leenstra TS, Maltha JC, Kuijpers-Jagtman AM, Spauwen PH (1995b) Wound healing in beagle dogs after palatal repair without denudation of bone. Cleft Palate Craniofac J 32(5):363–369; discussion 369–370

    Article  PubMed  CAS  Google Scholar 

  • Leenstra TS, Kohama G, Kuijpers-Jagtman AM, Freihofer HP (1996) Supraperiosteal flap technique versus mucoperiosteal flap technique in cleft palate surgery. Cleft Palate Craniofac J 33(6):501–506

    Article  PubMed  CAS  Google Scholar 

  • Leenstra TS, Kuijpers-Jagtman AM, Maltha JC (1998) The healing process of palatal tissues after palatal surgery with and without implantation of membranes: an experimental study in dogs. J Mater Sci Mater Med 9(5):249–255

    Article  PubMed  CAS  Google Scholar 

  • Lepekhin E, Gron B, Berezin V, Bock E, Dabelsteen E (2002) Differences in motility pattern between human buccal fibroblasts and periodontal and skin fibroblasts. Eur J Oral Sci 110(1):13–20

    Article  PubMed  Google Scholar 

  • Li J, Farthing PM, Ireland GW, Thornhill MH (1996) IL-1 alpha and IL-6 production by oral and skin keratinocytes: similarities and differences in response to cytokine treatment in vitro. J Oral Pathol Med 25(4):157–162

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Lamme EN, Steegers-Theunissen RP, Krapels IP, Bian Z, Marres H, Spauwen PH, Kuijpers-Jagtman AM, Von den Hoff JW (2008) Cleft palate cells can regenerate a palatal mucosa in vitro. J Dent Res 87(8):788–792

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Bian Z, Kuijpers-Jagtman AM, Von den Hoff JW (2010) Skin and oral mucosa equivalents: construction and performance. Orthod Craniofac Res 13(1):11–20

    Article  PubMed  CAS  Google Scholar 

  • Longaker MT, Adzick NS (1991) The biology of fetal wound healing: a review. Plast Reconstr Surg 87(4):788–798

    Article  PubMed  CAS  Google Scholar 

  • Mars M, Houston WJ (1990) A preliminary study of facial growth and morphology in unoperated male unilateral cleft lip and palate subjects over 13 years of age. Cleft Palate J 27(1):7–10

    Article  PubMed  CAS  Google Scholar 

  • McGrath MH, Simon RH (1983) Wound geometry and the kinetics of wound contraction. Plast Reconstr Surg 72(1):66–73

    Article  PubMed  CAS  Google Scholar 

  • McPherson JM (1992) The utility of collagen-based ­vehicles in delivery of growth factors for hard and soft tissue wound repair. Clin Mater 9(3–4):225–234

    Article  PubMed  CAS  Google Scholar 

  • Mignatti P, Rifkin DB, Welgus HG, Parks WC (1996) Proteinases and tissue remodeling. In: Clark RAF (ed) The molecular and cellular biology of wound healing. Plenum Press, New York, pp 427–461

    Google Scholar 

  • Minabe M, Kodama T, Hori T, Watanabe Y (1989) Effects of atelocollagen on the wound healing reaction following palatal gingivectomy in rats. J Periodontal Res 24(3):178–185

    Article  PubMed  CAS  Google Scholar 

  • Mio T, Adachi Y, Romberger DJ, Ertl RF, Rennard SI (1996) Regulation of fibroblast proliferation in three-dimensional collagen gel matrix. In Vitro Cell Dev Biol Anim 32(7):427–433

    Article  PubMed  CAS  Google Scholar 

  • Molsted K (1999) Treatment outcome in cleft lip and palate: issues and perspectives. Crit Rev Oral Biol Med 10(2):225–239

    Article  PubMed  CAS  Google Scholar 

  • Moriyama T, Asahina I, Ishii M, Oda M, Ishii Y, Enomoto S (2001) Development of composite cultured oral mucosa utilizing collagen sponge matrix and contracted collagen gel: a preliminary study for clinical applications. Tissue Eng 7(4):415–427

    Article  PubMed  CAS  Google Scholar 

  • Nakato H, Kimata K (2002) Heparan sulfate fine structure and specificity of proteoglycan functions. Biochim Biophys Acta 1573(3):312–318

    Article  PubMed  CAS  Google Scholar 

  • Nedelec B, Dodd CM, Scott PG, Ghahary A, Tredget EE (1998) Effect of interferon-alpha2b on guinea pig wound closure and the expression of cytoskeletal proteins in vivo. Wound Repair Regen 6(3):202–212

    Article  PubMed  CAS  Google Scholar 

  • Nimni ME (1997) Polypeptide growth factors: targeted delivery systems. Biomaterials 18(18):1201–1225

    Article  PubMed  CAS  Google Scholar 

  • Nukumi K, Masuda M, Obata A, Yumoto E (2004) Differences in expression of basic fibroblast growth factor during wound healing between oral mucosa and skin. Wound Repair Regen 12(1):A7

    Article  Google Scholar 

  • Oda Y, Kagami H, Ueda M (2004) Accelerating effects of basic fibroblast growth factor on wound healing of rat palatal mucosa. J Oral Maxillofac Surg 62(1):73–80

    Article  PubMed  Google Scholar 

  • Okazaki M, Yoshimura K, Uchida G, Harii K (2002) Elevated expression of hepatocyte and keratinocyte growth factor in cultured buccal-mucosa-derived fibroblasts compared with normal-skin-derived fibroblasts. J Dermatol Sci 30(2):108–115

    Article  PubMed  CAS  Google Scholar 

  • Ophof R, van Rheden RE, Von den HJ, Schalkwijk J, Kuijpers-Jagtman AM (2002) Oral keratinocytes cultured on dermal matrices form a mucosa-like tissue. Biomaterials 23(17):3741–3748

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Monasterio F, Serrano A, Barrera G, Rodriguez-Hoffman H, Vinageras E (1966) A study of untreated adult cleft palate patients. Plast Reconstr Surg 38(1):36–41

    Article  PubMed  CAS  Google Scholar 

  • Perko MA (1974) Primary closure of the cleft palate using a palatal mucosal flap: an attempt to prevent growth impairment. J Maxillofac Surg 2(1):40–43

    Article  PubMed  CAS  Google Scholar 

  • Pomahac B, Svensjo T, Yao F, Brown H, Eriksson E (1998) Tissue engineering of skin. Crit Rev Oral Biol Med 9(3):333–344

    Article  PubMed  CAS  Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6(3):331–343

    Article  PubMed  CAS  Google Scholar 

  • Rojas AI, Ahmed AR (1999) Adhesion receptors in health and disease. Crit Rev Oral Biol Med 10(3):337–358

    Article  PubMed  CAS  Google Scholar 

  • Ross RB (1987a) Treatment variables affecting facial growth in complete unilateral cleft lip and palate, part 1:treatment affecting growth. Cleft Palate J 24(1):5–23

    PubMed  CAS  Google Scholar 

  • Ross RB (1987b) Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 2: presurgical orthopedics. Cleft Palate J 24(1):24–30

    Google Scholar 

  • Ross RB (1987c) Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 3: alveolar repair and bone grafting. Cleft Palate J 24(1):33–44

    Google Scholar 

  • Ross RB (1987d) Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 4: repair of the cleft lip. Cleft Palate J 24(1):45–53

    Google Scholar 

  • Ross RB (1987e) Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 5: timing of palate repair. Cleft Palate J 24(1):54–63

    Google Scholar 

  • Ross RB (1987f) Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 6: techniques of palate repair. Cleft Palate J 24(1):64–70

    Google Scholar 

  • Ross RB (1987g) Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 7: an overview of treatment and facial growth. Cleft Palate J 24(1):71–77

    Google Scholar 

  • Rudolph R, Vande Berg J, Ehrlich HP (1992) Wound contraction and scar contracture. In: Cohen IK, Diegelman RT, Lindblad WJ (eds) Wound healing: biochemical and physical aspects. WB Saunders, Philadelphia, pp 96–114

    Google Scholar 

  • Rygh P, Tindlund R (1982) Orthopedic expansion and protraction of the maxilla in cleft palate patients–a new treatment rationale. Cleft Palate J 19(2):104–112

    PubMed  CAS  Google Scholar 

  • Searls JC, Kremenak CR, Rittman BR (1979) Quantitative characterization of changes in cellularity and collagen fiber size in contracting palatal wounds. Cleft Palate J 16(4):373–380

    PubMed  CAS  Google Scholar 

  • Semb G, Shaw WC (1996) Facial growth in orofacial clefting disorders. In: Turvey TA, Vig KWL, Fonseca RJ (eds) Facial clefts and craniosynostosis. Principles and management. WB Saunders, Philadelphia, pp 28–56

    Google Scholar 

  • Semb G, Shaw WC (1998) Facial growth after different methods of surgical intervention in patients with cleft lip and palate. Acta Odontol Scand 56(6):352–355

    Article  PubMed  CAS  Google Scholar 

  • Shaw WC, Semb G, Nelson P, Brattström V, Prahl-Andersen B (2000) The Eurocleft project 1996–2000. Ios Press, Amsterdam

    Google Scholar 

  • Skalak R, Fox CF (1988) Preface. In: Skalak R, Fox CF (eds) Tissue engineering. Alan R Liss, New York

    Google Scholar 

  • Squier CA, Finkelstein MW (2003) Oral mucosa. In: Nanci A (ed) Ten Cate’s oral histology: development, structure, and function, 6th edn. Mosby, St. Louis, pp 329–375

    Google Scholar 

  • Stephens P, Davies KJ, al-Khateeb T, Shepherd JP, Thomas DW (1996) A comparison of the ability of intra-oral and extra-oral fibroblasts to stimulate extracellular matrix reorganization in a model of wound contraction. J Dent Res 75(6):1358–1364

    Article  PubMed  CAS  Google Scholar 

  • Stephens P, Davies KJ, Occleston N, Pleass RD, Kon C, Daniels J, Khaw PT, Thomas DW (2001) Skin and oral fibroblasts exhibit phenotypic differences in extracellular matrix reorganization and matrix metalloproteinase activity. Br J Dermatol 144(2):229–237

    Article  PubMed  CAS  Google Scholar 

  • Sullivan WG (1989) In utero cleft lip repair in the mouse without an incision. Plast Reconstr Surg 84(5):723–730; discussion 731–722

    Article  PubMed  CAS  Google Scholar 

  • Sumi Y, Hata KI, Sawaki Y, Mizuno H, Ueda M (1999) Clinical application of cultured oral epithelium for palatal wounds after palatoplasty: a preliminary report. Oral Dis 5(4):307–312

    Article  PubMed  CAS  Google Scholar 

  • Szpaderska AM, Zuckerman JD, DiPietro LA (2003) Differential injury responses in oral mucosal and cutaneous wounds. J Dent Res 82(8):621–626

    Article  PubMed  CAS  Google Scholar 

  • Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363

    Article  PubMed  CAS  Google Scholar 

  • Tsai CY, Ueda M, Hata K, Horie K, Hibino Y, Sugimura Y, Toriyama K, Torii S (1997) Clinical results of cultured epithelial cell grafting in the oral and maxillofacial region. J Craniomaxillofac Surg 25(1):4–8

    Article  PubMed  CAS  Google Scholar 

  • van Beurden HE, Snoek PA, Von den Hoff JW, Torensma R, Kuijpers-Jagtman AM (2003) Fibroblast subpopulations in intra-oral wound healing. Wound Repair Regen 11(1):55–63

    Article  PubMed  Google Scholar 

  • Weinzweig J, Panter KE, Spangenberger A, Harper JS, McRae R, Edstrom LE (2002) The fetal cleft palate: III. Ultrastructural and functional analysis of palatal development following in utero repair of the congenital model. Plast Reconstr Surg 109(7):2355–2362

    Article  PubMed  Google Scholar 

  • Wijdeveld MG, Grupping EM, Kuijpers-Jagtman AM, Maltha JC (1988) Growth of the maxilla after soft tissue palatal surgery at different ages in beagle dogs: a longitudinal radiographic study. J Oral Maxillofac Surg 46(3):204–209

    Article  PubMed  CAS  Google Scholar 

  • Wijdeveld MG, Grupping EM, Kuijpers-Jagtman AM, Maltha JC (1989) Maxillary arch dimensions after palatal surgery at different ages on beagle dogs. J Dent Res 68(6):1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Wijdeveld MG, Maltha JC, Grupping EM, De Jonge J, Kuijpers-Jagtman AM (1991) A histological study of tissue response to simulated cleft palate surgery at different ages in beagle dogs. Arch Oral Biol 36(11):837–843

    Article  PubMed  CAS  Google Scholar 

  • Williamson JS, Snelling CF, Clugston P, Macdonald IB, Germann E (1995) Cultured epithelial autograft: five years of clinical experience with twenty-eight patients. J Trauma 39(2):309–319

    Article  PubMed  CAS  Google Scholar 

  • Yamada KM, Clark RAF (1996) Provisional matrix. In: Clark RAF (ed) The molecular and cellular biology of wound healing. Plenum Press, New York, pp 51–82

    Google Scholar 

  • Yokozeki M, Moriyama K, Shimokawa H, Kuroda T (1997) Transforming growth factor-beta 1 modulates myofibroblastic phenotype of rat palatal fibroblasts in vitro. Exp Cell Res 231(2):328–336

    Article  PubMed  CAS  Google Scholar 

  • Zelles T, Purushotham KR, Macauley SP, Oxford GE, Humphreys-Beher MG (1995) Saliva and growth factors: the fountain of youth resides in us all. J Dent Res 74(12):1826–1832

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes W. Von den Hoff Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Von den Hoff, J.W., Maltha, J.C., Kuijpers-Jagtman, A.M. (2013). Palatal Wound Healing: The Effects of Scarring on Growth. In: Berkowitz, S. (eds) Cleft Lip and Palate. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30770-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30770-6_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30769-0

  • Online ISBN: 978-3-642-30770-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics