Skip to main content

Cultural Heritage Applications: Archaeological Ceramics and Building Restoration

  • Chapter
  • First Online:
  • 1211 Accesses

Part of the book series: Springer Theses ((Springer Theses,volume 4))

Abstract

This chapter presents two applications: classification of archaeological ceramics and diagnosis of historic building restoration. In the first application, we consider the ICAMM-based algorithm proposed in Chap. 3 (Mixca) to model the joint-probability density of the features. This classifier is applied to a challenging novel application: classification of archaeological ceramics. ICAMM by Mixca gathers relevant characteristics that have general interest in the area of material classification. On one hand, it can deal with arbitrary forms of the underlying probability densities in the feature vector space as non-parametric methods can do. On the other hand, mutual dependences among the features are modelled in a parametric form so that ICAMM based on Mixca can achieve good performance even with a training set of relatively small size, which is characteristic of parametric methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Salazar, L. Vergara, ICA mixtures applied to ultrasonic non-destructive classification of archaeological ceramics. EURASIP J. Adv. Signal Process. vol. 2010, Article ID 125201, 11 pages, doi:10.1155/2010/125201 (2010)

  2. R.E. Taylor, M.J. Aitken, Chronometric Dating in Archaeology, Advances in archaeological and museum science series, vol 2 (Springer-Verlag, New York USA, 1997)

    Google Scholar 

  3. R. Cribbs, F. Saleh, An ultrasonic based system used for non-destructive imaging of archaeological sites, in Proceedings of Informatica ed Egittologia all’inizio degli anni’90, (Roma Italy, 1996), pp. 97–108

    Google Scholar 

  4. A. Murray, M.F. Mecklenburg, C.M. Fortenko, R.E. Green, Detection of delaminations in art objects using air-coupled ultrasound, in Proceedings of Materials Issues in Art and Archaeology III, (San Francisco USA, 1992), pp. 371–378

    Google Scholar 

  5. W.I. Sellers, Ultrasonic cave mapping. J. Archaeological Science 25(9), 867–873 (1998)

    Article  Google Scholar 

  6. A. Salazar, R. Miralles, A. Parra, L. Vergara, J. Gosalbez, Ultrasonic signal processing for archaeological ceramic restoration, in Proceedings of 31st IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP, (Toulouse, France, 2006), pp. III-1160–1163

    Google Scholar 

  7. L. Cohen, P. Loughlin, Recent Developments in Time-Frequency Analysis (Springer-Verlag, New York USA, 1998)

    Book  Google Scholar 

  8. R. Miralles, L. Vergara, A. Salazar, J. Igual, Blind detection of nonlinearities in ultrasonic grain noise. IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 55(3), 637–647 (2008)

    Article  Google Scholar 

  9. A.K. Jain, Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

    Article  Google Scholar 

  10. O. Chapelle, B. Schölkopf, A. Zien, Semi-supervised Learning, MIT Press, 2006.

    Google Scholar 

  11. A. Salazar, L. Vergara, A. Serrano, J. Igual, A general procedure for learning mixtures of independent component analyzers. Pattern Recognition 43(1), 69–85 (2010)

    Article  MATH  Google Scholar 

  12. J.F. Cardoso, A. Souloumiac, Blind beamforming for non gaussian signals. IEE Proceedings-F 140(6), 362–370 (1993)

    Google Scholar 

  13. A. Ziehe, K.R. Müller, TDSEP- an efficient algorithm for blind separation using time structure, in Proceedings of the 8th International Conference on Artificial Neural Networks, ICANN’98, Perspectives in Neural Computing, pp. 675-680 (1998)

    Google Scholar 

  14. A. Hyvärinen, E. Oja, A fast fixed-point algorithm for independent component analysis. Neural Computation 9(7), 1483–1492 (1998)

    Article  Google Scholar 

  15. A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans.Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  16. C.M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, 2004)

    Google Scholar 

  17. P.M. Rice, Pottery Analysis: A Sourcebook (The University of Chicago Press, Chicago, 1989)

    Google Scholar 

  18. K.G. Harry, A. Johnson, A non destructive technique for measuring ceramic porosity using liquid nitrogen. J. Archaeological Science 31, 1567–1575 (2004)

    Article  Google Scholar 

  19. S.L. Olsen, Scanning Electron Microscopy in Archaeology (British Archaeological Reports, Oxford, 1998)

    Google Scholar 

  20. J.D. Cheeke, Fundamentals and Applications of Ultrasonic Waves (CRC Press LLC, USA, 2002)

    Google Scholar 

  21. J. Krautkrämer, Ultrasonic Testing of Materials, 4th edn. (Springer, Berlin, 1990)

    Book  Google Scholar 

  22. M. Alba-Calzado, S. Gutiérrez-Lloret, Las producciones de transición al Mundo Islámico: el problema de la cerámica paleoandalusí (siglos VIII y IX). In Cerámicas hispanorromanas: Un estado de la cuestión, eds. B. Casasola, A. Ribera i Lacomba ( Universidad de Cadiz, Spain, 2008) pp 585–613

    Google Scholar 

  23. A. Salazar, L. Vergara, J. Igual, J. Gosalbez, Blind source separation for classification and detection of flaws in impact-echo testing. Mech Syst Signal Process. 19(6), 1312–1325 (2005)

    Article  Google Scholar 

  24. L. Vergara, R. Miralles, J. Gosálbez, F.J. Juanes, L.G. Ullate, J.J. Anaya, M.G. Hernández, M.A.G. Izquierdo, NDE ultrasonic methods to characterize the porosity of mortar. NDT&E International, Elsevier 34(8), 557–562 (2001)

    Article  Google Scholar 

  25. A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (John Wiley & Sons, New York, 2001)

    Book  Google Scholar 

  26. A. Cichocki, S. Amari, Adaptive Blind Signal and Image Processing: Learning algorithms and applications (Wiley, John & Sons, New York, 2001)

    Google Scholar 

  27. R. Miralles, L. Vergara, J. Gosálbez, Material grain noise analysis by using higher-order statistics. Signal Process. 84(1), 197–205 (2004)

    Article  MATH  Google Scholar 

  28. J. Igual, A. Camacho, L. Vergara, Blind source separation technique for extracting sinusoidal interferences in ultrasonic non-destructive testing. J. VLSI Signal Process. 38, 25–34 (2004)

    MATH  Google Scholar 

  29. J. Igual, A. Camacho, L. Vergara, Cancelling sinusoidal interferences in ultrasonic applications with a BSS algorithm for more sources than sensors, in Proceedings of the Independent Componente Analysis Workshop, ICA, (San Diego, 2001)

    Google Scholar 

  30. S. Kay, in Spectral Estimation: Theory and Application (Prentice-Hall, 1988)

    Google Scholar 

  31. L. Vergara, J. Gosalbez, J.V. Fuente, R. Miralles, I. Bosch, Measurement of cement porosity by centroid frequency profiles of ultrasonic grain noise. Signal Processing, Elsevier 84(12), 2315–2324 (2004)

    Article  Google Scholar 

  32. P.A. Regalia, in Adaptive IIR Filtering in Signal Processing and Control. (Marcel Dekker, 1994).

    Google Scholar 

  33. A.M. Pollard, C. Heron, Archaeological Chemistry (The Royal Society of Chemistry, Cambridge, 2008)

    Google Scholar 

  34. S.K. Thompson, Sampling, Wiley-Interscience, 2nd edn. (USA, New York, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Addisson Salazar .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salazar, A. (2013). Cultural Heritage Applications: Archaeological Ceramics and Building Restoration. In: On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling. Springer Theses, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30752-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30752-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30751-5

  • Online ISBN: 978-3-642-30752-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics