Skip to main content

Part of the book series: Springer Theses ((Springer Theses,volume 4))

Abstract

Independent component analysis (ICA) aims to separate hidden sources from their observed linear mixtures without any prior knowledge. The only assumption about the sources is that they are mutually independent. Thus, the goal is blind source estimation; although it has been recently alleviated by incorporating prior knowledge about the sources into the ICA model in the so-called semi-blind source separation. This technique has been widely used in many fields of application such as telecommunications, bioengineering, and material testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Jutten, J. Herault, Une solution neuromimétique au problème de séparation de sources. Traitement du Signal 5(6), 389–404 (1989)

    Google Scholar 

  2. C. Jutten, J. Herault, Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24, 1–10 (1991)

    Article  MATH  Google Scholar 

  3. C. Jutten, J. Herault, Blind separation of sources, part II: problems statement. Signal Process. 24, 11–20 (1991)

    Article  MATH  Google Scholar 

  4. C. Jutten, J. Herault, Blind separation of sources, part III: stability analysis. Signal Process. 24, 21–29 (1991)

    Article  Google Scholar 

  5. A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York, 2001)

    Book  Google Scholar 

  6. C.W. Hesse, C.J. James, On semi-blind source separation using spatial constraints with applications in EEG Analysis. IEEE Trans. Biomed. Eng. 53(12-1), 2525–2534 (2006)

    Article  Google Scholar 

  7. J. Even, K. Sugimoto, An ICA approach to semi-blind identification of strictly proper systems based on interactor polynomial matrix. Int. J. Robust Nonlinear Control 17, 752–768 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Z. Ding, T. Ratnarajah, C.F.N. Cowan, HOS-based semi-blind spatial equalization for MIMO rayleigh fading channels. IEEE Trans. Signal Process. 56(1), 248–255 (2008)

    Article  MathSciNet  Google Scholar 

  9. A. Cichocki, S. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications (Wiley, New York, 2001)

    Google Scholar 

  10. T.W. Lee, Independent Component Analysis—Theory and Applications (Kluwer Academic Publishers, Boston, 1998)

    MATH  Google Scholar 

  11. S. Roberts, R. Everson, Independent Component Analysis—Principles and Practice (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  12. A. Cichocki, R. Zdunek, A.H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation (Wiley, Hoboken, 2009)

    Google Scholar 

  13. P. Comon, C. Jutten (eds.), Handbook of Blind Source Separation Independent Component Analysis and Applications (Academic Press, Oxford, 2010)

    Google Scholar 

  14. M.S. Pedersen, J. Larsen, U. Kjems, L.C. Parra, A Survey of Convolutive Blind Source Separation Methods, ed. by J. Benesty, A. Huang. Multichannel Speech Processing Handbook, Chapter 51 (Springer, Berlin, 2007), pp. 1065–1084

    Google Scholar 

  15. H. Buchner, R. Aichner, W. Kellerman, TRINICON: a versatile framework for multichannel blind signal processing. in Proceedings of 29th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP, pp. III-889–892, Montreal, Canada, 2004

    Google Scholar 

  16. W. Kellerman, H. Buchner, R. Aichner, Separating convolutive mixture with TRINICON. in Proceedings of 31st IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP, pp. V-961–964, Toulouse, France, 2006

    Google Scholar 

  17. P. Comon, Independent component analysis—a new concept? Signal Process. 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  18. S. Amari, A. Cichocki, H. Yang, A new learning algorithm for blind signal separation, Advances in Neural Information Processing Systems, vol 8 (MIT Press, Cambridge, 1996), pp. 752–763

    Google Scholar 

  19. S. Amari, J.F. Cardoso, Blind source separation-semiparametric statistical approach. IEEE Trans. Signal Process. 45(11), 2692–2700 (1997)

    Article  Google Scholar 

  20. A. Hyvärinen, E. Oja, A fast fixed-point algorithm for independent component analysis. Neural Comput. 9(7), 1483–1492 (1998)

    Article  Google Scholar 

  21. D.T. Pham, P. Garrat, Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Trans. Signal Process. 45(7), 1712–1725 (1997)

    Article  MATH  Google Scholar 

  22. A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  23. T.W. Lee, M. Girolami, T.J. Sejnowski, Independent component analysis using an extended InfoMax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Comput. 11(2), 417–441 (1999)

    Article  Google Scholar 

  24. S.I. Amari, T.P. Chen, A. Cichocki, Nonholonomic orthogonal learning algorithms for blind source separation. Neural Comput. 12, 1463–1484 (2000)

    Article  Google Scholar 

  25. J.F. Cardoso, Dependence, correlation and gaussianity in independent component analysis. J. Mach. Learn. Res. 4, 1177–1203 (2003)

    MathSciNet  Google Scholar 

  26. A. Chen, P.J. Bickel, Consistent independent component analysis and prewhitening. IEEE Trans. Signal Process. 53(10), 3625–3632 (2005)

    Article  MathSciNet  Google Scholar 

  27. W. Liu, D.P. Mandic, A. Cichocki, Blind source extraction based on a linear predictor. IET Signal Process. 1(1), 29–34 (2007)

    Article  Google Scholar 

  28. J.F. Cardoso, Blind signal separation: statistical principles. Proceedings of the IEEE. Special Issue on Blind Identification and Estimation, vol 9, pp. 2009–2025, 1998

    Google Scholar 

  29. A. Chen, P.J. Bickel, Efficient independent component analysis. Annals Stat. 34(6), 2825–2855 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. F. Meinecke, A. Ziehe, M. Kawanabe, K.R. Müller, Resampling approach to estimate the stability of one-dimensional or multidimensional independent components. IEEE Trans. Biomed. Eng. 49(12), 1514–1525 (2002)

    Article  Google Scholar 

  31. J. Himberg, A. Hyvärinen, F. Esposito, Validating the independent components of neuroimaging time-series via clustering and visualization. Neuroimage 22(3), 1214–1222 (2004)

    Article  Google Scholar 

  32. A.J. Bell, T.J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995)

    Article  Google Scholar 

  33. J.F. Cardoso, A. Souloumiac, Blind beamforming for non gaussian signals. IEE Proc.-F 140(6), 362–370 (1993)

    Google Scholar 

  34. A. Ziehe, K.R. Müller, TDSEP- an efficient algorithm for blind separation using time structure. Proceedings of the 8th International Conference on Artificial Neural Networks, ICANN’98, Perspectives in Neural Computing, pp. 675–680, 1998

    Google Scholar 

  35. J.P. Nadal, N. Parga, Non linear neurons in the noise limit: a factorial code maximizes information transfer. Netw. Comput. Neural Syst. 5(3), 565–585 (1994)

    Article  MATH  Google Scholar 

  36. J.F. Cardoso, InfoMax and maximum likelihood for blind source separation. IEEE Signal Process. Lett. 4(4), 112–114 (1997)

    Article  Google Scholar 

  37. S.I. Amari, Natural gradient works efficiently in learning. Neural Comput. 10, 251–276 (1998)

    Article  Google Scholar 

  38. J.F. Cardoso, B. Laheld, Equivariant adaptive source separation. IEEE Trans. Signal Process. 45(2), 434–444 (1996)

    Google Scholar 

  39. C. Nikias, A. Petropulu, Higher-order Spectral Analysis—A Nonlinear Signal Processing Framework (Prentice Hall, Englewood Cliffs, 1993)

    Google Scholar 

  40. J.F. Cardoso, P. Comon, Tensor-based independent component analysis. Proceedings of the Fifth European Signal Processing Conference, EUSIPCO 1990, pp. 673–676, 1990

    Google Scholar 

  41. J.F. Cardoso, A. Souloumiac, Jacobi angles for simultaneous diagonalization. SIAM J. Matrix Anal. Appl. 17(1), 161–164 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  42. J.F. Cardoso, High-order contrasts for independent component analysis. Neural Comput. 11(1), 157–192 (1999)

    Article  MathSciNet  Google Scholar 

  43. A. Ziehe, K.R. Muller, G. Nolte, B.M. Mackert, G. Curio, Artifact reduction in magnetoneurography based on time-delayed second order correlations. IEEE Trans. Biomed. Eng. 41, 75–87 (2000)

    Article  Google Scholar 

  44. A. Belouchrani, K. Abed-Meraim, J.F. Cardoso, E. Moulines, A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 45, 434–444 (1997)

    Article  Google Scholar 

  45. R. Boscolo, H. Pan, Independent component analysis based on nonparametric density estimation. IEEE Trans. Neural Netw. 15(1), 55–65 (2004)

    Article  Google Scholar 

  46. R. Boustany, J. Antoni, Blind extraction of a cyclostationary signal using reduced-rank cyclic regression—a unifying approach. Mech. Syst. Signal Process. 22, 520–541 (2008)

    Article  Google Scholar 

  47. J. Even, K. Sugimoto, An ICA approach to semi-blind identification of strictly proper systems based on interactor polynomial matrix. Int. J. Robust Nonlinear Control 17, 752–768 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. F.R. Bach, M.I. Jordan, Kernel independent component analysis. J. Mach. Learn. Res. 3, 1–48 (2002)

    MathSciNet  Google Scholar 

  49. T. Hastie, R. Tibshirani, Independent Component Analysis Through Product Density Estimation, Technical Report, Stanford University, 2002

    Google Scholar 

  50. E.G. Learned-Miller, J.W. Fisher, ICA using spacings estimates of entropy. J. Mach. Learn. Res. 4, 1271–1295 (2003)

    MathSciNet  Google Scholar 

  51. A. Samarov, A. Tsybakov, Nonparametric independent component analysis. Bernoulli 10(4), 565–582 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  52. B.W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman and Hall, London, 1985)

    Google Scholar 

  53. R. Choudrey, S. Roberts, Variational mixture of bayesian independent component analysers. Neural Comput. 15(1), 213–252 (2002)

    Article  Google Scholar 

  54. M.E. Tipping, C.M. Bishop, Mixtures of probabilistic principal component analyzers. Neural Comput. 11(2), 443–482 (1999)

    Article  Google Scholar 

  55. Z. Ghahramani, M. Beal, Variational inference for Bayesian mixtures of factor analysers. Adv. Neural Inf. Process. Syst. 12, 449–445 (2000)

    Google Scholar 

  56. C. Archambeau, N. Delannay, M. Verleysen, Mixtures of robust probabilistic principal component analyzers. Neurocomputing 71(7–9), 1274–1282 (2008)

    Article  Google Scholar 

  57. M. Svensén, C.M. Bishop, Robust Bayesian mixture modelling. Neurocomputing 64, 235–252 (2005)

    Article  Google Scholar 

  58. T.W. Lee, M.S. Lewicki, T.J. Sejnowski, ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1078–1089 (2000)

    Article  Google Scholar 

  59. S. Roberts, W.D. Penny, Mixtures of independent component analyzers. in Proceedings of ICANN2001, Vienna, August 2001, pp. 527–534

    Google Scholar 

  60. J.A. Palmer, K. Kreutz-Delgado, S. Makeig, An Independent Component Analysis Mixture Model with Adaptive Source Densities, Technical Report, UCSD, 2006

    Google Scholar 

  61. K. Chan, T.W. Lee, T.J. Sejnowski, Variational learning of clusters of undercomplete nonsymmetric independent components. J. Mach. Learn. Res. 3, 99–114 (2002)

    MathSciNet  Google Scholar 

  62. C.T. Lin, W.C. Cheng, S.F. Liang, An on-line ICA-mixture-model-based self-constructing fuzzy neural network. IEEE Trans. Circuits Syst. 52(1), 207–221 (2005)

    Article  MathSciNet  Google Scholar 

  63. T. Yoshida, M. Sakagami, K. Yamazaki, T. Katura, M. Iwamoto, N. Tanaka, Extraction of neural activity from in vivo optical recordings using multiple independent component analysis. IEEJ Trans. Electron. Inf. Syst. 127(10), 1642–1650 (2007)

    Google Scholar 

  64. J.A. Palmer, S. Makeig, K. Kreutz-Delgado, B.D. Rao, Newton method for the ICA mixture model. Proceedings of the 33rd IEEE International Conference on Acoustics, Speech, and Signal, pp. 1805–1808, Las Vegas, USA, 2008

    Google Scholar 

  65. N.H. Mollah, M. Minami, S. Eguchi, Exploring latent structure of mixture ICA models by the minimum ß-Divergence method. Neural Comput. 18, 166–190 (2005)

    Article  Google Scholar 

  66. D. Erdogmus, J.C. Principe, From linear adaptive filtering to nonlinear information processing—the design and analysis of information processing systems. IEEE Signal Process. Mag. 23(6), 14–33 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Addisson Salazar .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salazar, A. (2013). ICA and ICAMM Methods. In: On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling. Springer Theses, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30752-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30752-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30751-5

  • Online ISBN: 978-3-642-30752-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics