Skip to main content

Using a Clustering Approach with Evolutionary Optimized Attribute Weights to Form Product Families for Production Leveling

  • Conference paper
  • First Online:
Robust Manufacturing Control

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

Production leveling aims at balancing production volume as well as production mix. Conventional leveling approaches require limited product diversity and stable, predictable customer demands. They are well-suited only for large scale production. This paper presents a methodology that enables the leveling of low volume and high mix production. It is based on two fundamental steps. In the first step, which is focused on in this paper, product types are grouped into families according to their manufacturing similarity. In the second step, a family-oriented leveling pattern is generated. This paper presents an innovative clustering approach for product family formation regarding leveling. It employs evolutionary strategies to optimize the weights of the attributes which are used for clustering according to their impact on the grouping result. The paper refers to an industrial application and also shows how product families can be utilized for leveling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liker, J.K.: The Toyota Way. McGraw-Hill, New York (2004)

    Google Scholar 

  2. Dennis, P.: Lean Production Simplified, 2nd edn. Productivity Press, New York (2007)

    Google Scholar 

  3. Rother, M., Harris, R.: Creating Continuous Flow. Lean Enterprise Institute, Brookline (2004)

    Google Scholar 

  4. Hüttmeir, A., de Treville, S., van Ackere, A., Monnier, L., Prenninger, J.: Trading off between heijunka and just-in-sequence. Int. J. Prod. Econ. 118, 501–507 (2009)

    Article  Google Scholar 

  5. de Smet, R., Gelders, L.: Using simulation to evaluate the introduction of a kanban subsystem within an MRP-controlled manufacturing environment. Int. J. Prod. Econ. 56–57, 111–122 (1998)

    Article  Google Scholar 

  6. Slomp, J., Bokhorst, J.A.C., Germs, R.A.: Lean production control system for high-variety/low-volume environments. Prod. Plann. Control 20, 586–595 (2009)

    Article  Google Scholar 

  7. Monden, Y.: Toyota Production System. Industrial Engineering and Management Press, Norcross (1983)

    Google Scholar 

  8. Shingo, S.: A Study of the Toyota Production System. Productivity Press, Cambridge (1989)

    Google Scholar 

  9. Takeda, H.: Das synchrone Produktionssystem, 4th edn. Redline Wirtschaft, Frankfurt/Main (2004)

    Google Scholar 

  10. Duggan, K.J.: Creating Mixed Model Value Streams. Productivity Press, New York (2002)

    Google Scholar 

  11. Erlach, K.: Wertstromdesign. Springer, Berlin (2007)

    Google Scholar 

  12. Rother, M., Shook, J.: Learning to See. Lean Enterprise Institute, Brookline (1999)

    Google Scholar 

  13. Smalley, A.: Creating level pull. Lean Enterprise Institute, Cambridge (2004)

    Google Scholar 

  14. Wuthnow, A.: Steuerung und Nivellierung von Wertströmen in der Automobilsteuergerätefertigung. Shaker, Aachen (2010)

    Google Scholar 

  15. Bohnen, F., Buhl, M., Deuse, J.: Systematic procedure for leveling of low volume and high mix production. In: 44th CIRP conference on manufacturing systems 2011

    Google Scholar 

  16. Boysen, N., Fliedner, M., Scholl, A.: Sequencing mixed-model assembly lines: Survey, classification and model critique. Eur. J. Oper. Res. 192, 349–373 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kubiak, W.: Minimizing variation of production rates in just-in-time systems. Eur. J. Oper. Res. 66, 259–271 (1993)

    Article  MATH  Google Scholar 

  18. Yavuz, M., Akcali, E.: Production smoothing in just-in-time manufacturing systems. Int. J. Prod. Res. 45, 3579–3597 (2007)

    Article  MATH  Google Scholar 

  19. Yavuz, M.: An iterated beam search algorithm for the multi-level production smoothing problem with workload smoothing goal. Int. J. Prod. Res. 48, 6189–6202 (2010)

    Article  MATH  Google Scholar 

  20. Miltenburg, J.: Level schedules for mixed-model assembly lines in just-in-time production systems. Manag. Sci. 35, 192–207 (1989)

    Article  MATH  Google Scholar 

  21. Merengo, C., Nava, F., Pozzetti, A.: Balancing and sequencing manual mixed-model assembly lines. Int. J. Prod. Res. 37, 2835–2860 (1999)

    Article  MATH  Google Scholar 

  22. Korkmazel, T., Meral, S.: Bicriteria sequencing methods for the mixed-model assembly line in just-in-time production systems. Eur. J. Oper. Res. 131, 188–207 (2001)

    Article  MATH  Google Scholar 

  23. Kubiak, W., Steiner, G., Yeomans, S.J.: Optimal level schedules for mixed-model, multi-level just-in-time assembly systems. Ann. Oper. Res. 69, 241–259 (1997)

    Article  MATH  Google Scholar 

  24. McMullen, P.R.: The permutation flow shop problem with just in time production considerations. Prod. Plann. Control 13, 307–316 (2002)

    Article  Google Scholar 

  25. Yavuz, M., Akcali, E., Tufekci, S.: A hybrid meta-heuristic for the batching problem in just-in-time flow shops. J. Math. Model. Algorithm 5, 371–393 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yavuz, M., Tüfekci, S.: Dynamic programming solution to the batching problem in just-in-time flow-shops. Comput. Ind. Eng. 51, 416–432 (2006)

    Article  Google Scholar 

  27. Kubiak, W., Yavuz, M.: Just-in-time smoothing through batching. Manuf. Serv. Oper. Manag. 10, 506–518 (2008)

    Article  Google Scholar 

  28. McMullen, P.R.: JIT mixed-model sequencing with batching and setup considerations via search heuristics. Int. J. Prod. Res. 48, 6559–6582 (2010)

    Article  MATH  Google Scholar 

  29. Yavuz, M., Tufekci, S.: Analysis and solution to the single-level batch production smoothing problem. Int. J. Prod. Res. 45, 3893–3916 (2007)

    Article  MATH  Google Scholar 

  30. Bohnen, F., Deuse, J.: Leveling of low volume and high mix production based on a group technology approach. In: Sihn, W., Kuhlang, P. (eds.) Proceedings of the 43rd CIRP International Conference on Manufacturing Systems, pp. 949–956 (2010)

    Google Scholar 

  31. Bohnen, F., Maschek, T., Deuse, J.: Leveling of low volume and high mix production based on a Group Technology approach. CIRP-JMST 4, 247–251 (2011)

    Google Scholar 

  32. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  33. Han, J., Kamber, M.: Data Mining—Concepts and Techniques. 2nd edn., Morgan Kaufmann, Los Altos (2006)

    Google Scholar 

  34. Weihs, C., Szepannek, G.: Distances in classification. In: Goebel, R., Siekmann, J., Wahlster, W. (eds.) ICDM 2009. LNCS, vol. 5633, pp. 1–12. Springer, Heidelberg (2009)

    Google Scholar 

  35. Harrington, E.C.: The desirability function. Ind. Qual. Control 21, 494–498 (1965)

    Google Scholar 

  36. Morik, K., Kaspari, A., Wurst, M., Skirzynski, M.: Multi-objective frequent termset clustering. Knowl. Inf. Syst. 30, 715–738 (2012)

    Article  Google Scholar 

  37. Mierswa, I., Wurst, M.: Information preserving multi-objective feature selection for unsupervised learning. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 1545–1552 (2006)

    Google Scholar 

  38. Deuse, J.: Fertigungsfamilienbildung mit feature-basierten Produktmodelldaten. Shaker, Aachen (1998)

    Google Scholar 

  39. Yin, Y., Kaku, I., Tang, J., Zhu, J.: Data Mining. Springer, London (2011)

    Book  Google Scholar 

  40. Halkidi, M., Gunopulos, D., Vazirgiannis, M., Kumar, N., Domeniconi, C.: A Clustering Framework Based on Subjective and Objective Validity Criteria. ACM Trans Knowl Discov Data 1, pp. 18:1–18:25 (2008)

    Google Scholar 

  41. Stolpe, M., Morik, K.: Learning from label proportions by optimizing cluster model selection. In: Gunopulos, D., Hofmann, T., Malerba, D. et al. (eds.) ECML PKDD 2011, LNAI, vol. 6913, pp. 349–364. Springer, Berlin (2011)

    Google Scholar 

  42. Davies, D.D., Bouldin, D.W.: A Cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979)

    Article  Google Scholar 

  43. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  44. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Rapid prototyping for complex data mining tasks. In: Proceedings of the 12th ACM SIGKDD 2006

    Google Scholar 

  45. MacQueen, J.: Some methods for classification and analysis of multivariate observations. Symp. Math. stat. prob., 281–297 (1967)

    Google Scholar 

Download references

Acknowledgments

Parts of the work on the proposed paper have been supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Centre SFB 876 “Providing Information by Resource-Constrained Analysis”, project B3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Bohnen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bohnen, F., Stolpe, M., Deuse, J., Morik, K. (2013). Using a Clustering Approach with Evolutionary Optimized Attribute Weights to Form Product Families for Production Leveling. In: Windt, K. (eds) Robust Manufacturing Control. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30749-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30749-2_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30748-5

  • Online ISBN: 978-3-642-30749-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics