Skip to main content

A Pedestrian Dynamics Based Approach to Autonomous Movement Control of Automatic Guided Vehicles

  • Conference paper
  • First Online:
  • 1514 Accesses

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

Automatic guided vehicles (AGVs) are a prospective concept for optimizing transportation capacity and reducing the costs of material transport and handling in manufacturing systems. Besides the careful allocation of individual transportation tasks, single units have to be able to freely move in a given two-dimensional space possibly restricted by a set of fixed or variable obstacles in order to use their full potentials. One particular possibility for realizing an autonomous movement control is utilizing self-organization concepts from pedestrian dynamics like the social force model. Since this model itself does not explicitly prohibit possible collisions, this contribution discusses necessary modifications such as the implementation of braking strategies and approaches for anticipating deadlock situations, which need to be additionally considered for developing a generally applicable autonomous movement control. By means of numerical simulations, different operational situations are investigated in a generic scenario in order to identify the practical limitations of our approach. The presented work suggests considerable potentials of pedestrian dynamics-based self-organization principles for establishing a flexible and robust movement control for AGVs, which shall be further studied in future work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There are first successful implementations of autonomously controlled AGVs in container terminals were many problems that are expected to arise from a free movement are avoided by restricting the motion to designated one-way traffic lines with a Manhattan-type regular grid topology. However, in this contribution, the case of free motion is considered.

References

  1. Hülsmann, M., Windt, K. (eds.): Understanding Autonomous Cooperation and Control in Logistics. Springer, Berlin (2010)

    Google Scholar 

  2. Hülsmann, M., Scholz-Reiter, B., Windt, K. (eds.): Autonomous Cooperation and Control in Logistics. Springer, Berlin (2011)

    Google Scholar 

  3. Zöbel, D.: The Deadlock problem: a classifying bibliography. ACM SIGOPS Operating Syst. Rev. 17, 6–15 (1983)

    Article  Google Scholar 

  4. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. Wiley, Hoboken (2009)

    Google Scholar 

  5. Möhring, R.H., Köhler, E., Gawrilow, E., Stenzel, B.: Conflict-free real-time AGV routing. In: Operations Research Proceedings 2004, Part 1, pp. 18–24. Springer, Heidelberg (2005)

    Google Scholar 

  6. Hartwig, J.: Modellierung und Steuerung von Systemen kooperierender Automated Guided Vehicles. Diploma thesis, Dresden University of Technology (2006) (in German)

    Google Scholar 

  7. Berman, S., Edan, Y.: Decentralized autonomous AGV system for material handling. Int. J. Prod. Res. 40, 3995–4006 (2002)

    Article  Google Scholar 

  8. Srivastava, S.C., Choudhary, A.K., Kumar, S., Tiwari, M.K.: Development of an intelligent agent-based AGV controller for a flexible manufacturing system. Int. J. Adv. Manuf. Technol. 36, 780–797 (2008)

    Article  Google Scholar 

  9. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison Wesley, Harlow (1999)

    Google Scholar 

  10. Blue, V.J., Adler, J.L.: Emergent fundamental pedestrian flows from cellular automaton microsimulation. Transp. Res. Rec. 1644, 29–36 (1998)

    Article  Google Scholar 

  11. Muramatsu, M., Nagatani, T.: Jamming transition in two-dimensional pedestrian traffic. Physica A 275, 281–291 (2000)

    Article  Google Scholar 

  12. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295, 507–525 (2001)

    Article  MATH  Google Scholar 

  13. Okazaki, S.: A study of pedestrian movement in architectural space. Part 1: Pedestrian movement by the application of magnetic models. Trans. of AIJ 283, 111–117 (1979) (in Japanese)

    Google Scholar 

  14. Helbing, D., Molnár, P.: The social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  15. Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian dynamics. Phys. Rev. E 72, 026112 (2005)

    Article  Google Scholar 

  16. Parisi, D.R., Dorso, C.O.: Microscopic dynamics of pedestrian evacuation. Physica A 354, 606–618 (2005)

    Article  Google Scholar 

  17. Parisi, D.R., Gilman, M., Moldovan, H.: A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions. Physica A 388, 3600–3608 (2009)

    Article  Google Scholar 

  18. PTV AG. http://www.ptv.de/software/verkehrsplanung-verkehrstechnik/software-und-system-solutions/viswalk/

  19. Lewin, K.: The Conceptual representation and the measurement of psychological forces. Duke University Press, Durham (1938)

    Book  Google Scholar 

  20. Lewin, K.: Defining the “Field at a Given Time”. Psychol. Rev. 50, 292–310 (1943)

    Article  Google Scholar 

  21. Hoogendoorn, S., Daamen, W.: Pedestrian behavior at bottlenecks. Transp. Sci. 39, 147–159 (2005)

    Article  Google Scholar 

  22. Moussaïd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.: Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc. R. Soc. B 276, 2755–2762 (2009)

    Article  Google Scholar 

  23. Katz, Y., Ioannou, C.C., Tunstrom, K., Huepe, C., Couzin, I.D.: Inferring the structure and dynamics of interactions in schooling fish. Proc. Natl. Acad. Sci. USA 108, 18720–18725 (2011)

    Article  Google Scholar 

  24. Bähr, M.: Anwendbarkeit eines fußgängerdynamischen Modells für die autonome Steuerung fahrerloser Transportfahrzeuge. Technical report, Dresden University of Technology (unpublished, available from the authors upon request) (in German)

    Google Scholar 

  25. Seidel, T.: Modellierung von Produktionsnetzwerken aus der Perspektive interagierender Transportprozesse. Ph.D. thesis, Dresden University of Technology (2007) (in German)

    Google Scholar 

  26. Seidel, T., Hartwig, J., Sanders, R.L., Helbing, D.: An agent-based approach to self-organized production. In: Blum, C., Merkle, D. (eds.) Swarm Intelligence: Introduction and Applications, pp. 219–252. Springer, Berlin (2008)

    Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the German Research Foundation (DFG project no. He 2789/8-1,8-2) and the Leibniz Society (project ECONS). Inspiring discussions with Stefan Lämmer and Dirk Helbing are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reik V. Donner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bähr, M., Donner, R.V., Seidel, T. (2013). A Pedestrian Dynamics Based Approach to Autonomous Movement Control of Automatic Guided Vehicles. In: Windt, K. (eds) Robust Manufacturing Control. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30749-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30749-2_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30748-5

  • Online ISBN: 978-3-642-30749-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics