Skip to main content

Elastic-Plastic Fatigue Crack Growth

  • Chapter
  • First Online:
Advanced Methods of Fatigue Assessment

Abstract

Conventional fatigue crack propagation approaches rely on similitude arguments and relationships between the stress intensity factor range and crack growth rate. The application limit of this approach is specified by small-scale yielding conditions. Still within these limits, an explanation and the straightforward modelling of the mean stress influence and the influence of variable amplitudes requires consideration of cyclic plasticity. Plasticity-induced crack closure greatly influences the crack growth rate. Modelling tools and algorithms are presented. Outside the small-scale yielding limits, the stress intensity factor range must be substituted by a crack driving force parameter of elastic-plastic fracture mechanics. Various proposals are presented and discussed with a focus on the ΔJ-integral. Together with an adequate consideration of crack closure, advances in simulating fatigue crack growth in this regime more realistically are presented. Multiaxial and mixed mode loading are a continuing challenge for actual research. These topics are discussed against the background of current expertise and available computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth RA (1984) The assessment of defects in structures of strain hardening material. Engng Fract Mech 19:633–642

    Google Scholar 

  • Aliaga D, Davy A, Schaff H (1985) A simple crack closure model for predicting fatigue crack growth under flight simulation loading. In: Durability and damage tolerance in aircraft design, pp 605–630. EMAS, Warley, UK

    Google Scholar 

  • Alzos WX, Skat AC, Hillberry BM (1976) Effect of single overload/underload cycles on fatigue crack propagation. ASTM STP 595:41–60

    Google Scholar 

  • Anderson TL (1995) Fracture Mechanics – Fundamentals and Applications. CRC Press, Boca Raton, Fla

    Google Scholar 

  • Andersson H, Persson C, Hansson T, Melin S, Järvstråt N (2004) Constitutive dependence in finite-element modelling of crack closure during fatigue. Fatigue Fract Mater Struct 27:25–87

    Google Scholar 

  • Anthes RJ (1997) Ein neuartiges Kurzrißfortschrittsmodell zur Anrißlebensdauervorhersage bei wiederholter Beanspruchung. Inst Stahlbau Werkstoffmech, TH Darmstadt, Rep 57

    Google Scholar 

  • Anthes RJ, Rodriguez-Ocaña J, Seeger T (1996) Crack opening stresses under constant and variable amplitude loading determined by finite element analyses. In: Fatigue’96, (Eds: Lütjering G, Nowack H), pp 1075–1080. Elsevier Science, Oxford

    Google Scholar 

  • Antunes F, Rodrigues D (2008) Numerical simulation of plasticity induced crack closure: identification and discussion of parameters. Engng Fract Mech 75:3101–3120

    Google Scholar 

  • ASTM 1820 (2007) Standard test method for measurement of fracture toughness. ASTM

    Google Scholar 

  • Atluri SN, Nishioka T, Nakagaki M (1984) Incremental path-independent integrals in inelastic and dynamic fracture. Engng Fract Mech 20:209–244

    Google Scholar 

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Advances Appl Mech 7:55–129

    Google Scholar 

  • Baudin G, Robert M (1984) Crack growth life time prediction under aeronautical type loading. In: Proc 5th Europ Conf on Fracture, Lissabon, pp 779–792

    Google Scholar 

  • Beretta S, Carboni M, Madia M (2009) Modelling of fatigue thresholds for small cracks in a mild steel by ‘strip-yield’ model. Engng Fract Mech 76:1548–1561

    Google Scholar 

  • Bernard PJ, Lindley TC, Richards CE (1976) Mechanisms of overload retardation during fatigue crack propagation. ASTM STP 595:78–100

    Google Scholar 

  • Bicego V (1989) Low cycle fatigue life predictions in terms of an EPFM small crack model. Engng Fract Mech 32:339–349

    Google Scholar 

  • Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL (1996) Quasi-automatic simulation of crack propagation for 2D LEFM problems. Engng Fract Mech 55:321–334

    Google Scholar 

  • Blackburn WS (1972) Path independent integrals to predict onset of crack instability in an elastic-plastic material. Int J Fract Mech 8:343–346

    Google Scholar 

  • Blom AF, Holm DK (1987) Load interaction effects on fatigue crack propagation in steels of varying strength. In: Role of fracture mechanics in modern technology, (Eds: Sih CC, Nisitani H, Ishihara T). Elsevier Science, Oxford

    Google Scholar 

  • Blom AF, Hedlund A, Zhao W, Fathulla A, Weiss B, Stickler R (1986) Short fatigue crack growth behaviour in Al2024 and A7475. In: The behaviour of short fatigue cracks (Eds: Miller KJ, de los Rios ER), pp 37–66. MEP, London

    Google Scholar 

  • Boettner RC, Laird C, McEvily AJ (1965) Crack nucleation and growth in high strain low cycle fatigue. Trans AIME 233:379–387

    Google Scholar 

  • Brocks W, Scheider I (2003) Reliable J-values – Numerical aspects of the path-dependence of the J-integral in incremental plasticity. Materialpruefung 45:264–275

    Google Scholar 

  • Broek D (1988) Elementary Engineering Fracture Mechanics. Martinus Nijhoff Publ, Den Haag

    Google Scholar 

  • Brown MW, Miller KJ (1985) Mode I fatigue crack growth under biaxial stress at room and elevated temperature. ASTM STP 853:135–152

    Google Scholar 

  • Brown MW, de los Rios ER, Miller KJ (1988) A critical comparison of proposed parameters for high strain fatigue crack growth. ASTM STP 924:233–259

    Google Scholar 

  • Brüning J, Hertel O, Vormwald M, Savaidis G (2006) Fatigue crack growth at notches considering plasticity induced crack closure. In: Proc 16th Europ Conf Fract, (Ed: Gdoutos EE), pp 245–246. Springer Science+Business Media

    Google Scholar 

  • BS 7910 (2005) Guide to methods for assessing the acceptability of flaws in metallic structures. British Standards Institution

    Google Scholar 

  • Budiansky B, Hutchinson, JW (1978) Analysis of closure in fatigue crack growth. J Appl Mech 45:267–276

    Google Scholar 

  • Buschermöhle H, Memhard D, Vormwald M (1996) Fatigue crack growth acceleration or retardation due to compressive overload excursions. In: Proc 6th Int Congr Fatigue, pp 583–588. Elsevier Science, Oxford

    Google Scholar 

  • Carter BJ, Wawrzynek PA, Ingraffea AR (2000) Automated 3D crack growth simulation. Int J Num Meth Engng 47:229–253

    Google Scholar 

  • Chaboche JL (1986) Time-independent constitutive theories for cyclic plasticity. Int J Plast 2:149–188

    Google Scholar 

  • Chaboche JL (1989) Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int J Plast 5:247–302

    Google Scholar 

  • Chermahini R, Palmberg B, Blom A (1993) Fatigue crack growth and closure behaviour of semicircular and semi-elliptical surface flaws. Int J Fatigue 15:259–263

    Google Scholar 

  • Dankert M, Greuling S, Seeger T (1999) A unified elastic-plastic model for fatigue crack growth at notches including crack closure effects. ASTM STP 1343:411–426

    Google Scholar 

  • de Koning AU (1981) A simple crack closure model for prediction of fatigue crack growth rates under variable amplitude loading. ASTM STP 743:63–85

    Google Scholar 

  • de Koning AU, Dougherty, DJ (1989) Prediction of low and high crack growth rates under constant and variable amplitude loading. In: Fatigue crack growth under variable amplitude loading, pp 208–217, Elsevier Science, Amsterdam

    Google Scholar 

  • de Koning AU, Liefting G (1988) Analysis of crack opening behavior by application of a discretized strip yield model. ASTM STP 982:437–458

    Google Scholar 

  • Dill HD, Saff CR (1976) Spectrum crack growth prediction method based on crack surface displacement and contact analysis. Fatigue Crack Growth under Spectrum Loads, ASTM STP 595:306–319

    Google Scholar 

  • Dill HD, Saff CR, Potter JM (1980) Effects of fighter attack spectrum and crack growth. Effect of Load Spectrum Variables on Fatigue Crack Initiation and Propagation, ASTM STP 714:205–217

    Google Scholar 

  • Donahue RJ, McClark H, Atanmo P, Kumble R, McEvily AJ (1972) Crack opening displacement and the rate of fatigue crack growth. Int J Fract 8:209–219

    Google Scholar 

  • Döring R (2006) Zum Deformations- und Schädigungsverhalten metallischer Werkstoffe unter mehrachsig nichtproportionalen zyklischen Beanspruchungen. Inst Stahlbau Werkstoffmech, TU Darmstadt, Rep 78

    Google Scholar 

  • Döring R, Hoffmeyer J, Seeger T, Vormwald, M (2003) A plasticity model for calculating stress-strain sequences under multiaxial nonproportional cyclic loading. Comput Mater Sci 28:587–596

    Google Scholar 

  • Döring R, Hoffmeyer J, Seeger T, Vormwald M (2006) Short fatigue crack growth under nonproportional multiaxial elastic-plastic strains. Int J Fatigue 28:972–982

    Google Scholar 

  • Dowling NE (1977(1)) Crack growth during low-cycle fatigue of smooth axial specimens. ASTM STP 637:97–121

    Google Scholar 

  • Dowling NE (1977(2)) Geometry effects and the J-integral approach to elastic-plastic fatigue crack growth. ASTM STP 601:19–32

    Google Scholar 

  • Dowling NE (1987) J-integral estimates for cracks in infinite bodies. Engng Fract Mech 26:333–348

    Google Scholar 

  • Dowling NE, Begley JA (1976) Fatigue crack growth during gross plasticity and the J-integral. ASTM STP 590:82–103

    Google Scholar 

  • Dowling NE, Iyyer NS (1987) Fatigue crack growth and closure at high cyclic strains. Mat Sci Engng 96: 99–107

    Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–108

    Google Scholar 

  • DuQuesnay DL, Topper TH, Yu MT, Pompetzki MA (1992) The effective stress range as a mean stress parameter. Int J Fatigue 14:45–50

    Google Scholar 

  • Earthman JC (1991) Characterization of small crack growth in 12 % CrMoV steel under high temperature, low cycle fatigue conditions. Mater Sci Engng A132:89–95

    Google Scholar 

  • Eidinoff HL, Bell PD, (1977) Application of the crack closure concept to aircraft fatigue crack propagation analysis. In: Proc 9th ICAF Symp on Aeronautical Fatigue, Darmstadt, pp 5.2/1–5.2/58

    Google Scholar 

  • Elber W (1970) Fatigue crack closure under cyclic tension. Engng Fract Mech 2:37–45

    Google Scholar 

  • Elber W (1971) The significance of fatigue crack closure. ASTM STP 486:230–242

    Google Scholar 

  • El Haddad MH, Smith KH, Topper TH (1979(1)) A strain based intensity factor solution for short fatigue cracks initiating from notches. ASTM STP 677:274–289

    Google Scholar 

  • El Haddad MH, Smith KH, Topper TH (1979(2)) Fatigue crack propagation of short cracks. J Engng Mater Techn 101:42–46

    Google Scholar 

  • El Haddad MH, Dowling NE, Topper TH, Smith KN (1980) J-integral applications for short fatigue cracks at notches. Int J Fract 16:15–30

    Google Scholar 

  • El Haddad MH, Mukherjee B (1983) Elastic-plastic fracture mechanics analysis of fatigue crack growth. ASTM STP 803:II-689–II-707

    Google Scholar 

  • El-Zeghayar M, Topper TH, Conle FA, Bonnen JJF (2010) Modeling crack closure and damage in variable amplitude fatigue using smooth specimen fatigue test data. Int J Fatigue 33:223–231

    Google Scholar 

  • El-Zeghayar M, Topper TH, Soudki KA (2011) A model of crack opening stresses in variable amplitude loading using smooth specimen fatigue test data for three steels. Int J Fatigue 33:1337–1350

    Google Scholar 

  • Fatemi A, Socie DF (1988) A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Engng Mater Struct 11:149–165

    Google Scholar 

  • Fleck N, Newman JC (1988) Analysis of crack closure under plane strain conditions. ASTM STP 982:319–341

    Google Scholar 

  • Forman RG, Mettu SR (1992) Behavior of surface and corner cracks subjected to tensile and bending loads in Ti6Al4 V alloy. ASTM STP 1131:519–546

    Google Scholar 

  • Forsyth PJ, Ryder DA (1960) Fatigue fracture. Aircraft Engng 32:96–99

    Google Scholar 

  • Führing H (1977) Berechnung von elastisch-plastischen Beanspruchungsabläufen in Dugdale-Rißscheiben mit Rißuferkontakt auf der Grundlage nichtlinearer Schwingbruchmechanik, Inst Statik Stahlbau, TH Darmstadt, Rep 30

    Google Scholar 

  • Führing H (1982) Modell zur nichtlinearen Rißfortschrittsvorhersage unter Berücksichtigung von Lastreihenfolgeeinflüssen (LOSEQ). Fraunhofer Inst Betriebsfest, Darmstadt, Rep FB-162

    Google Scholar 

  • Führing H, Seeger T (1979) Dugdale crack closure analysis of fatigue cracks under constant amplitude loading. Engng Fract Mech 11:99–122

    Google Scholar 

  • Führing H, Seeger, T (1984) Fatigue crack growth under variable amplitude loading. In: Subcritical crack growth due to fatigue, stress corrosion and creep (Ed: Larson LH), pp 109–133. Elsevier Applied Science, Oxford

    Google Scholar 

  • Fulland M (2003) Risssimulation in dreidimensionalen Strukturen mit automatischer adaptiver Finite-Elemente-Netzgenerierung. VDI Fortschrittbericht, Ser 18, No 280, VDI-Verlag, Düsseldorf

    Google Scholar 

  • Gallagher JP (1974) A generalized development of yield zone models. AFFDL-TM-74-28-FBR. Wright Patterson Air Force Laboratory

    Google Scholar 

  • Gamache B, McEvily A (1993) On the development of fatigue crack closure. In: Proc 5th Int Conf on Fatigue and Fatigue Thresholds, Montreal, pp 577–582

    Google Scholar 

  • Gray TD, Gallagher JP (1976) Predicting fatigue crack retardation following a single overload using a modified Wheeler model. ASTM STP 590:331–344

    Google Scholar 

  • Grin EA, Shur DM, Mazepa AG (1987) Study of the kinetics of growth of a low-cycle fatigue crack with the use of the J-Integral. Translation. Problemy Prochnosti USSR 19:1325–1329

    Google Scholar 

  • Gross D, Seelig T (52011) Bruchmechanik – mit einer Einführung in die Mikromechanik. Springer-Verlag, Berlin

    Google Scholar 

  • Hahn GT, Rosenfield AR (1965) Local yielding and extension of a crack under plane stress. Acta Met 13:293–306

    Google Scholar 

  • Haigh JR, Skelton RP (1978) A strain intensity approach to high temperature fatigue crack growth and failure. Mater Sci Engng 36:133-137

    Google Scholar 

  • Hatanaka K, Fujimitsu T, Shiraishi S (1989) An analysis of surface crack growth in circumferentially grooves components under low-cycle fatigue. JSME Ser 1(32):245–255

    Google Scholar 

  • He MY, Hutchinson JW (1983) Bounds for fully plastic problems for infinite bodies. ASTM STP 803:277–290

    Google Scholar 

  • Heitmann HH (1983) Betriebsfestigkeit von Stahl: Vorhersage der technischen Anrisslebensdauer unter Berücksichtigung des Verhaltens von Mikrorissen. Ph D thesis, TH Aachen

    Google Scholar 

  • Heitmann HH, Vehoff H, Neumann P (1985) Life prediction for random load fatigue based on the growth behaviour of microcracks. In: Advances in fracture research (Eds: Valluri SR et al.), pp 3599–3606. Pergamon Press, Oxford

    Google Scholar 

  • Hertel O, Vormwald M (2011) Short-crack-growth-based fatigue assessment of notched components under multiaxial variable amplitude loading. Engng Frac Mech 78:1614–1627

    Google Scholar 

  • Hertel O, Döring R, Vormwald M (2004) Cyclic J-integral under nonproportional loading. In: Proc 7th Int Conf Biaxial/Multiaxial Fatigue Fract, pp 513–518. DVM, Berlin

    Google Scholar 

  • Herz E, Thumser R, Bergmann JW, Vormwald M (2006) Endurance limit of autofrettaged Diesel-engine injection tubes with defects. Engng Fract Mech 73:3–21

    Google Scholar 

  • Herz E, Hertel O, Vormwald M (2011) Numerical simulation of plastic deformation induced fatigue crack opening and closure for autofrettaged intersecting holes. Engng Fract Mech 78:559–572

    Google Scholar 

  • Horikawa K, Cho SM (1987) Initial fatigue crack growth behaviour in a notched component, report II, Trans JWRI 16:167–175

    Google Scholar 

  • Hoshide T, Socie DF (1987) Mechanics of mixed mode small fatigue crack growth. Engng Fract Mech 26:841–850

    Google Scholar 

  • Hoshide T, Socie DF (1988) Crack nucleation and growth modeling in biaxial fatigue. Engng Fract Mech 29:287–299

    Google Scholar 

  • Hoshide T, Tanaka K, Yamada A (1981) Stress ratio effect of fatigue crack propagation in biaxial stress field. Fatigue Engng Mater Struct 4:355–366

    Google Scholar 

  • Hoshide T, Miyahara M, Inoue T (1988) Elastic-plastic behaviour of short fatigue crack in smooth specimen. ASTM STP 924:312–322

    Google Scholar 

  • Hou C-Y (2004) Three dimensional finite element analysis of fatigue crack closure behavior in surface flaws. Int J Fatigue 26:1225–1239

    Google Scholar 

  • Huang JS, Pelloux RM (1980) Low cycle fatigue crack propagation in Hastelloy-X at 25 and 760 °C. Metall Trans A11:899–904

    Google Scholar 

  • Ibrahim FK (1989) The effect of stress ratio, compressive peak stress and maximum stress level on fatigue behaviour of 2024-T3 aluminium alloy. Fatigue Fract Engng Mater Struct 12:9–18

    Google Scholar 

  • Ibrahim FK, Thompson JC, Topper TH (1986) A study of the effect of mechanical variables on fatigue crack closure and propagation. Int J Fatigue 8:135–142

    Google Scholar 

  • Irwin GR (1956) Onset of fast crack propagation in high strength steel and aluminium alloys. In: Proc Sagamore Res Conf, vol 2, pp 288–305

    Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  • Ishikawa H, Kitagawa H, Okamura H (1979) J-integral of a mixed-mode crack and its application. Proc 3rd Int Conf Mech Behaviour Mat ICM 3, vol 3, pp 447–455

    Google Scholar 

  • Jablonski DA (1989) An experimental study of the validity of a delta J criterion for fatigue crack growth. Nonlinear Fracture Mechanics, ASTM STP 995:361–387

    Google Scholar 

  • Jacoby GH, Nowack H, van Lipzig HT (1976) Experimental results and a hypothesis for fatigue crack propagation under variable amplitude loading. Fatigue Crack Growth Under Spectrum Loads, ASTM STP 595:172–186

    Google Scholar 

  • Jiang Y (1993) Cyclic plasticity with an emphasis on ratchetting. Ph D thesis. Univ Illinois, Urbana-Champaign

    Google Scholar 

  • Jiang Y (1995) A new constitutive model in the theory of plasticity – Part I: Theory. J Press Vess Technol 117(4):365–70

    Google Scholar 

  • Jiang Y, Feng M (2004) Modeling of fatigue crack propagation. Engng Mater Technol 126:77–86

    Google Scholar 

  • Jiang Y, Sehitoglu H (1996(1)) Modeling of cyclic ratchetting plasticity, Part I: Development of constitutive equations. J Appl Mech 63:720–725

    Google Scholar 

  • Jiang Y Sehitoglu, H (1996(2)) Modeling of cyclic ratchetting plasticity, Part II: Comparison of model simulations with experiments. J Appl Mech 63:726–733

    Google Scholar 

  • Jolles M (1985) Effects of load gradient on applicability of a fatigue crack growth rate-cyclic J relation. ASTM STP 868:381–391

    Google Scholar 

  • Kim KS, Orange TW (1988) A review of path-independent integrals in elastic-plastic fracture mechanics. ASTM STP 945:713–729

    Google Scholar 

  • Kishimoto K, Aoki S, Sakata M (1980) On the path independent integral J, Engng Fract Mech 13:841–850

    Google Scholar 

  • Kocak M, Webster S, Janosh JJ, Ainsworth RA, Koers R (2005) Fitness for service procedure FITNET. GKSS, Geesthacht

    Google Scholar 

  • Kumar R, Singh K (1995) Influence of stress ratio on fatigue crack growth in mild steel. Engng Fract Mech 503:377–384

    Google Scholar 

  • Kumar R, German MD, Shih CF (1981) An engineering approach for elastic-plastic fracture analysis. EPRI-Rep NP-1931

    Google Scholar 

  • Kuna M (22010) Numerische Beanspruchungsanalyse von Rissen. Vieweg Teubner, Wiesbaden

    Google Scholar 

  • Laird C (1967) The influence of metallurgical structure on the mechanisms of fatigue crack propagation. ASTM STP 415:131–180

    Google Scholar 

  • Lalor P, Sehitoglu, H, McClung RC (1986) Mechanics aspects of small crack growth from notches – the role of crack closure. In: The behaviour of short fatigue cracks (Eds: Miller KJ, de los Rios ER), pp 369–386. Wiley, London

    Google Scholar 

  • Lamba HS (1975) The J-integral applied to cyclic loading, Engng Fract Mech 7:693–703

    Google Scholar 

  • Lankford J, Davidson DL (1976) Fatigue crack tip plasticity associated with overloads and subsequent cycling. J Engng Mater Technol 98:17–29

    Google Scholar 

  • Lazzarin P, Tovo R (1998) A notch stress intensity factor approach to the stress analysis of welds. Fatigue Fract Engng Mater Struct 21:1089–1103

    Google Scholar 

  • Lei Y. (2008) Finite element crack closure analysis of a compact tension specimen. Int J Fatigue 30:21–31

    Google Scholar 

  • Ma CC, Huang, JI, Tsai CH (1994) Weight functions and stress intensity factors for axial cracks in hollow cylinders, J Press Vessel Technol 116:423–430

    Google Scholar 

  • Martha LF (1989) Topological and geometrical modeling approach to numerical discretization and arbitrary fracture simulation in three dimensions. Ph D thesis. Cornell Univ

    Google Scholar 

  • Matsuoka S, Tanaka K, Kawahara M (1976) The retardation phenomenon of fatigue crack growth in HT80 steel. Engng Fract Mech 8:507–523

    Google Scholar 

  • McClung RC (1987) Fatigue crack closure and crack growth outside the small scale yielding regime. Rep 139, University of Illinois, Urbana-Champaign

    Google Scholar 

  • McClung RC (1989) Closure and growth of mode I cracks in biaxial fatigue. Fatigue Fract Engng Mater Struct 12:447–460

    Google Scholar 

  • McClung RC (1991(1)) Finite element modeling of crack closure during simulated fatigue threshold testing. Int J Fatigue 52:145–157

    Google Scholar 

  • McClung RC (1991(2)) The influence of applied stress, crack length and stress intensity factor on crack closure. Metall Trans A22:1559–1571

    Google Scholar 

  • McClung RC (1991(3)) A simple model for crack growth near stress concentrations. J Pressure Vessel Technol 113:542–548

    Google Scholar 

  • McClung RC (1999) Finite element analysis of fatigue crack closure — A historical and critical review. In: Proc 7th Int Fatigue Crack Conf, vol 1, pp 495–502

    Google Scholar 

  • McClung RC, Sehitoglu H (1988) Closure behavior of small cracks under high strain fatigue histories. ASTM STP 982:279–299

    Google Scholar 

  • McClung RC, Sehitoglu H (1991) Characterization of fatigue crack growth in intermediate and large scale yielding. J Engng Mater Technol 113:15–22

    Google Scholar 

  • McClung RC, Sehitoglu H (1996) On the finite element analysis of fatigue crack closure, part 1, basic modeling issues. Engng Fract Mech 33:237–52

    Google Scholar 

  • McClung RC, Chell GG, Lee Y-D, Russel DA, Orient GE (1999) Development of a practical methodology for elastic-plastic and fully plastic fatigue crack growth. Rep NASA/CR-1999-209428, Marshall Space Flight Center

    Google Scholar 

  • McDowell DL (1994) A shear stress based critical-plane criterion of multiaxial fatigue failure for design and life prediction. Fatigue Fract Engng Mater Struct 11:1475–1485

    Google Scholar 

  • McDowell DL, Bennett VP (1996) Microcrack growth law for multiaxial fatigue. Fatigue Fract Engng Mater Struct 19:821–837

    Google Scholar 

  • McDowell DL, Berard JY (1992) A ∆J-based approach to biaxial fatigue. Fatigue Fract Engng Mater Struct 15:719–741

    Google Scholar 

  • McEvily AJ (1969) Fatigue crack growth and strain intensity factor. In: Proc Air Force Conf Fatigue Fract Aircraft Struct Mater, pp 451–458. NASA Rep AFFDL-TR-70-144

    Google Scholar 

  • McEvily AJ (1988) On crack closure in fatigue crack growth. ASTM STP 982:35–43

    Google Scholar 

  • McEvily AJ, Beukelmann D, Tanaka K (1974) On large scale plasticity effects in fatigue crack propagation. In: Proc Symp Mech Behavior Mater, vol 1, pp 269–281. SMSJ, Kyoto

    Google Scholar 

  • McEvily AJ, Endo M, Murakami Y (2003) On the square root on area relationship and the short fatigue crack threshold, Fatigue Fract Engng Mater Struct 26:269–278

    Google Scholar 

  • McMillan JC, Pelloux RM (1967) Fatigue crack propagation under program and random loading. ASTM STP 415:505–535

    Google Scholar 

  • Mellings S, Baynham J, Adey RA (2002) Predicting residual strength using fully automatic crack growth, Engng Anal Boundary Elements 26:479–488

    Google Scholar 

  • Mills WJ, Hertzberg RW (1975) The effect of sheet thickness on fatigue crack retardation in 2024-T3 aluminium alloy. Engng Fract Mech 7:705–711

    Google Scholar 

  • Miner MA (1945) Cumulative Damage in Fatigue. J Appl Mech 12:A159–A164

    Google Scholar 

  • Miura N, Fujioka T, Kashima K, Kanno S, Hayashi M, Ishiwata M, Gotoh N (1994) Low cycle fatigue and ductile fracture for Japanese carbon steel piping under dynamic loading. Nucl Engng Design 153:57–69

    Google Scholar 

  • Moreno V, Jordan E (1986) Prediction of material thermomechanical response with a unified viscoplastic constitutive model. Int J Plast 2:223–245

    Google Scholar 

  • Mowbray DF (1979) Use of a compact-type strip specimen for fatigue crack growth rate testing in the high-rate regime. ASTM STP 668:736–752

    Google Scholar 

  • Mróz Z (1967) On the description of anisotropic work-hardening. J Mech Phys Solids 15:163–175

    Google Scholar 

  • Mróz Z (1969) An attempt to describe the behavior of metals under cyclic loads using a more general work-hardening model. Acta Mechanica 7:199–212

    Google Scholar 

  • Mu Z, Vehoff H, Brede M, Neumann P (1996) Behavior of short cracks in alloy 800HT under biaxial fatigue. Mater Sci Technol 12:416–420

    Google Scholar 

  • Musava JK, Radon JC (1980) An elastic-plastic crack growth analysis using the J-integral concept. In: Proc 3rd Coll on Fract, pp 129–141

    Google Scholar 

  • NASGRO reference manual, version 4.02 (2002) NASA Johnson Space Center, http://www. swri.org/4org/d18/mateng/matint/nasgro

  • Neuber H (1961) Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. J Appl Mech 28:544–550

    Google Scholar 

  • Newman JC (1974) Finite element analysis of fatigue crack propagation – including the effect of closure. Ph D thesis. Virginia Polytech Inst State Univ, Blacksburg, Va

    Google Scholar 

  • Newman JC (1976) Finite element analysis of fatigue crack closure. ASTM STP 590:281–301

    Google Scholar 

  • Newman JC (1981) A crack closure model for predicting fatigue crack growth under aircraft spectrum loading. ASTM STP 748:53–84

    Google Scholar 

  • Newman JC (1982) Prediction of fatigue crack growth under variable amplitude and spectrum loading using a closure model. ASTM STP 761:255–277

    Google Scholar 

  • Newman JC (1983) A nonlinear fracture mechanics approach to the growth of small cracks. In: Behaviour of short cracks in airframe components. AGARD Conf Proc 328, pp 6.1–6.26

    Google Scholar 

  • Newman JC (1984) A crack opening stress equation for fatigue crack growth. Int J Fract 24:R131–R135

    Google Scholar 

  • Newman JC, Phillips EP, Everett RA (1999(1)) Fatigue analysis under constant- and variable-amplitude loading using small-crack theory. NASA TM 209329, Washington

    Google Scholar 

  • Newman JC, Wu XR, Swain MH, Zhao W, Phillips EP, Ding CF (1999(2)) Small crack growth and fatigue life predictions for high-strength aluminium alloys, Part II: Crack closure and fatigue analysis. Fatigue Fract Engng Mater Struct 22:59–72

    Google Scholar 

  • Nicholas T, Palazotto AN, Bednarz E (1988) An analytical investigation of plasticity induced closure involving short cracks. ASTM STP 982:361–379

    Google Scholar 

  • Obrtlik K, Polak J (1985) Fatigue growth of surface cracks in the elastic-plastic region, Fatigue Fract Engng Mater Struct 8:23–31

    Google Scholar 

  • Ohji K, Ogura K, Ohkubo Y (1974) On the closure of fatigue cracks under cyclic tensile loading. Int J Fract 10:123–124

    Google Scholar 

  • Ohno N, Wang JD (1993) Kinematic hardening rules with critical state of dynamic recovery, part I, formulation and basic features of ratchetting behavior. Int J Plast 9:375–385

    Google Scholar 

  • Padmadinata, UH (1990) Investigation of crack closure prediction models for fatigue in aluminium sheet under flight simulation loading. Ph D thesis. Techn Univ Delft

    Google Scholar 

  • Pang CM, Song JH (1994) Crack growth and closure behavior of short fatigue cracks. Engng Fract Mech 47:327–343

    Google Scholar 

  • Paris PC (1960) The growth of cracks due to variations in load. Ph D thesis, Lehigh Univ, Bethlehem, Pa

    Google Scholar 

  • Paris PC, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Engng 85:528–539

    Google Scholar 

  • Park SJ, Song JH (1999) Simulation of fatigue crack closure behaviour under variable-amplitude loading by a 2D finite element analysis based on the most appropriate mesh size concept. ASTM STP 1343: 337–348

    Google Scholar 

  • Petit J, Zeghloul A (1986) On the effect of environment on short crack growth behaviour and threshold. In: The behaviour of short fatigue cracks (Eds: Miller KJ, de los Rios ER), pp 163–178. MEP, London

    Google Scholar 

  • Petrak GS (1974) Strength level effects on fatigue crack growth and retardation. Engng Fract Mech 6:725–733

    Google Scholar 

  • Pippan R, Zelger C, Gach E, Bichler C, Weinhandl H (2011) On the mechanism of fatigue crack propagation in ductile metallic materials. Fatigue Fract Engng Mater Struct 34:1–16

    Google Scholar 

  • Radaj D, Vormwald M (2007) Ermüdungsfestigkeit – Grundlagen für Ingenieure. Springer-Verlag, Berlin

    Google Scholar 

  • Rahman S, Wilkowski G, Mohan R (1997) Low-cycle fatigue crack growth considerations in pipe fracture analysis. Nucl Engng Design 168:105–118

    Google Scholar 

  • Ramos MS, Pereira MV, Darwish FA, Motta SH, Carneiro MA (2003) Fatigue Fract Eng Mater Struct 26:115–121

    Google Scholar 

  • Reddy SC, Fatemi A (1992) Small crack growth in multiaxial fatigue. ASTM STP 1122:276–298

    Google Scholar 

  • Reger M, Remy L (1982) Influence of environment on microcrack propagation in high temperature low cycle fatigue. In: Proc 4th Europ Conf Fract, pp 531–538. EMAS, Warley, UK

    Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks, J Appl Mech 35:379–309

    Google Scholar 

  • Richard HA, Sander M (2009) Ermüdungsrisse erkennen, sicher beurteilen, vermeiden. Vieweg Teubner Verlag, Wiesbaden

    Google Scholar 

  • Rie KT, Schubert R (1987) Note on the crack closure phenomenon in low-cycle fatigue. In: Proc 2nd Int Conf Low Cycle Fatigue Elastic-plastic Behav Mater, pp 575–580

    Google Scholar 

  • Rie KT, Wittke H (1996) New approach for estimation of ΔJ and for measurement of crack growth at elevated temperature. Fatigue Fract Engng Mater Struct 19:975–983

    Google Scholar 

  • Ritchie RO, Yu W, Blom AF, Holm, DK (1987) An analysis of crack tip shielding in aluminium alloy 2124, a comparison of large, small, through-thickness and surface fatigue cracks. Fatigue Fract Engng Mater Struct 10:343–362

    Google Scholar 

  • Saal H (1971) Einfluß von Formzahl und Spannungsverhältnis auf die Zeit- und Dauerfestigkeit und Rißfortschreitungen bei Flachstäben aus St52. Rep 17, Inst Stahlbau Werkstoffmech, TH Darmstadt

    Google Scholar 

  • Sadananda K, Shahinian P (1979) A fracture mechanics approach to high temperature fatigue crack growth in Udimet 700. Engng Fract Mech 11:73–86

    Google Scholar 

  • Sadananda K, Sarkar S, Kujawski D, Vasudevan A (2009) A two-parameter analysis of SN fatigue life using Δσ and σmax. Int J Fatigue 31:1648–1659

    Google Scholar 

  • Sanford RJ (2003) Principles of fracture mechanics. Pearson Education, Upper Saddle River, NJ

    Google Scholar 

  • Savaidis G (1995) Berechnung der Bauteilanrißlebensdauer bei mehrachsigen proportionalen Beanspruchungen. Rep 54, Inst Stahlbau Werkstoffmech, TH Darmstadt

    Google Scholar 

  • Savaidis G, Seeger T (1996) A short crack growth prediction model for multiaxial proportional elasto-plastic loading. In: Proc 6th Int Fatigue Congr, vol 2, pp 1001–1006. Elsevier, Oxford

    Google Scholar 

  • Savaidis G, Seeger T (1997) Consideration of multiaxiality in fatigue life prediction using the closure concept. Fatigue Fract Engng Mater Struct 20:985–1004

    Google Scholar 

  • Savaidis G, Dankert M, Seeger T (1995) An analytical procedure for predicting opening loads of cracks at notches. Fatigue Fract Engng Mater Struct 18:425–442

    Google Scholar 

  • Savaidis G, Savaidis A, Zerres P, Vormwald M (2010) Mode I fatigue crack growth at notches considering crack closure. Int J Fatigue 32:1543–1558

    Google Scholar 

  • Saxena A (1998) Nonlinear Fracture Mechanics for Engineers. CRC Press, Boca Raton, Flo

    Google Scholar 

  • Schijve J (1973) Effect of load sequences on crack propagation under random and program loading. Engng Fract Mech 5:269–280

    Google Scholar 

  • Schijve J (1976(1)) Observations on the prediction of fatigue crack propagation under variable-amplitude loading. ASTM STP 595:3–23

    Google Scholar 

  • Schijve J (1976(2)) The effect of pre-strain on fatigue-crack growth and crack closure. Engng Fract Mech 8:575–581

    Google Scholar 

  • Schijve J (1981) Some formulae for the opening stress level. Engng Fract Mech 14:461–465

    Google Scholar 

  • Schijve J (1988) Fatigue crack closure – Observations and technical significance. ASTM STP 982:319–341

    Google Scholar 

  • Schijve J (1992) Fundamental aspects of prediction on fatigue crack growth under variable-amplitude loading. In: Theoretical concepts and numerical analysis of fatigue, pp 111–130 EMAS, Warley, UK

    Google Scholar 

  • Schijve J (22009) Fatigue of structures and materials. Springer Science+Business Media

    Google Scholar 

  • Schijve J, Vlutters AM, Ichsan SP, Provo-Kluit JC (1985) Crack growth in aluminium alloy sheet material under flight simulation loading. Int J Fatigue 7:127–136

    Google Scholar 

  • Schöllmann M, Fulland M, Richard HA (2003) Development of a new software for adaptive crack growth simulations in 3D structures. Engng Fract Mech 70:249–268

    Google Scholar 

  • Schwalbe KH (1980) Bruchmechanik metallischer Werkstoffe. Hanser-Verlag, München

    Google Scholar 

  • Seeger T (1973) Ein Beitrag zur Berechnung von statisch und zyklisch belasteten Rißscheiben nach dem Dugdale–Barenblatt-Modell. Rep 21. Inst Statik Stahlbau, TH Darmstadt

    Google Scholar 

  • Sehitoglu AGH, Gall K (1996) Recent advances in fatigue crack growth modeling. Int J Fract 80:165–192

    Google Scholar 

  • Singh KD, Khor KH, Sinclair I (2008) Finite element and analytical modelling of crack closure due to repeated overloads. Acta Materialia 56:835–851

    Google Scholar 

  • Singh KD, Parry MR, Sinclair I (2011) Variable amplitude fatigue crack growth behavior - a short overview. J Mech Sci Technol 25(3):663–673

    Google Scholar 

  • Skelton RP (1982) Growth of short cracks during high strain fatigue and thermal cycling. ASTM STP 770, 337–381

    Google Scholar 

  • Skinner J, Daniewicz S (2002) Simulation of plasticity induced fatigue crack closure in part-through cracked geometries using finite element analysis. Engng Fract Mech 69:1–11

    Google Scholar 

  • Socie DF, Hua CT, Worthem DW (1987) Mixed mode small crack growth. Fatigue Fract Engng Mater Struct 10:1–16

    Google Scholar 

  • Socie DF, Furmann S (1996) Fatigue damage simulation models for multiaxial loading. In: Proc 6th Int Fatigue Conf, pp 967–976

    Google Scholar 

  • Solomon HD (1972) Low cycle fatigue crack propagation in 1018 steel. J Mater 7:299–306

    Google Scholar 

  • Swenson DV, Ingraffea AR (1988) Modeling mixed-mode dynamic crack propagation using finite elements, theory and applications. Comput Mech 3:381–397

    Google Scholar 

  • Tanaka K (1983) The cyclic J-integral as a criterion for fatigue crack growth. Int J Fracture 22:91–104

    Google Scholar 

  • Tanaka K, Hoshide T, Sakai N (1984) Mechanics of fatigue crack propagation by crack-tip plastic blunting. Engng Fract Mech 19:805–825

    Google Scholar 

  • Tchankov D, Sakane M, Itoh T, Hamada N (2008) Crack opening displacement approach to assess multiaxial low cycle fatigue. Int J Fatigue 30:417–425

    Google Scholar 

  • Thumser R (2009) Simulation des Rissfortschritts in autofrettierten und nicht autofrettierten Bohrungsverschneidungen auf der Grundlage der linear-elastischen Bruchmechanik, Ph D thesis, Univ Weimar

    Google Scholar 

  • Thumser R, Bergmann J, Herz E, Hertel O, Vormwald M (2008) Variable amplitude fatigue of autofrettaged diesel injection parts. Mater Wissensch Werkstofftech 39:719–725

    Google Scholar 

  • Timbrell C, Cook G (1997) 3D FE fracture mechanics analysis for industrial applications. In: Seminar on inelastic finite element analysis, Inst Mech Eng, London

    Google Scholar 

  • Tomkins B (1975) The development of fatigue crack propagation models for engineering applications at elevated temperatures. J Engng Mater Technol 97:289–297

    Google Scholar 

  • Tomkins B (1980) Micromechanisms of fatigue crack growth at high stress. Metal Sci 14:408–417

    Google Scholar 

  • Trebules VW, Roberts R, Hertzberg RW (1973) Effect of multiple overloads on fatigue crack propagation in 2024-T3 aluminium alloy. ASTM STP 536:115–146

    Google Scholar 

  • Vardar O (1982) Fatigue crack propagation beyond general yield. J Engng Mater Technol 104:192–199

    Google Scholar 

  • Verreman Y, Bailon JP, Masounave J (1986) Fatigue short crack propagation and plasticity induced crack closure at the toe of a fillet welded joint. In: The behaviour of short fatigue cracks (Eds: Miller KJ, de los Rios ER), pp 387–404. Wiley, London

    Google Scholar 

  • Vormwald M (1989) Anrißlebensdauervorhersage auf der Basis der Schwingbruchmechanik für kurze Risse. Rep 47, Inst Stahlbau Werkstoffmech, TH Darmstadt

    Google Scholar 

  • Vormwald M (2011) Ermüdungslebensdauer von Baustahl unter komplexen Beanspruchungsab-läufen am Beispiel des Stahles S460. Mater Test 53:98–108

    Google Scholar 

  • Vormwald M, Döring R (2009) Deformations and damage to metallic materials under multiaxial non-proportional loading. Comp Mater Sci 46:555–560

    Google Scholar 

  • Vormwald M, Heuler P, Seeger T (1992) A fracture mechanics based model for cumulative damage assessment as part of fatigue life prediction. ASTM STP 1122:28–43

    Google Scholar 

  • Vormwald M, Heuler P, Krä C (1994) Spectrum fatigue life assessment of notched specimens using a fracture mechanics based approach. ASTM STP 1231:219–231

    Google Scholar 

  • Vormwald M, Seeger T (1991) The consequences of short crack closure on fatigue crack growth under variable amplitude loading. Fatigue Fract Engng Mater Struct 14:205–225

    Google Scholar 

  • Wang GS (1993) The plasticity aspect of fatigue crack growth. Engng Fract Mech 46:909–930

    Google Scholar 

  • Wang GS, Blom AF (1991) A strip model for fatigue crack growth predictions under general load conditions. Engng Fract Mech 40:507–533

    Google Scholar 

  • Wang SZ, Yang Z, Kang MK (1983) Fatigue crack growth rate under full yielding condition for 15CDV6 steel. Engng Fract Mech 18:895–902

    Google Scholar 

  • Wells AA (1961) Unstable crack propagation in metals, cleavage and fast fracture. In: Proc Crack Prop Symp Cranfield, pp 210–230

    Google Scholar 

  • Wheeler OE (1972) Spectrum loading and crack growth. J Basic Engng 94:181–186

    Google Scholar 

  • Willenborg J, Engle RM, Wood HA (1971) A crack growth retardation model using an effective stress concept. Techn Mem 71-1-FBR, Wright-Patterson Air Force Base, Dayton, Oh

    Google Scholar 

  • Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24:109–114

    Google Scholar 

  • Wüthrich C (1982) The extension of the J-integral concept to fatigue cracks. Int J Fracture 20:R35–R37

    Google Scholar 

  • Wüthrich C, Hoffelner W (1984) Fatigue crack growth at high strain amplitudes. In: Proc 4th Int Conf Mech Behav Mater, vol 2, pp 911–917. Pergamon Press, Oxford

    Google Scholar 

  • Yamada Y, Lacy T, Newman J Jr (2007) Effects of crack closure on fatigue crack-growth predictions for 2024-T351 aluminum alloy panels under spectrum loading. Int J Fatigue 29:1503–1509

    Google Scholar 

  • Yang S, Lu Y (1989) Surface crack growth in a plate under the remote high strain controlled cyclic loading. Fatigue Fract Engng Mater Struct 12:399–407

    Google Scholar 

  • Yoon KB, Saxena A (1991) An interpretation of the ΔJ for cyclically unsaturated materials. Int J Fract 49:R3–R9

    Google Scholar 

  • Zentech Int ZENCRACK (2012) Tool for 3D fracture mechanics simulation. http://www.zentech.co.uk/zencrack.htm

  • Zerbst U, Madia M, Hellmann D (2011) An analytical fracture mechanics model for estimation of SN curves of metallic alloys containing large second phase particles. Engng Fract Mech. doi:10.1016/j.engfracmech.2011.12.001

  • Zerres P (2010) Numerische Simulation des Ermüdungsrissfortschrittes in metallischen Strukturen unter Berücksichtigung zyklischer Plastizitätseffekte. Rep 88, Inst Stahlbau Werkstoffmech, TU Darmstadt

    Google Scholar 

  • Zerres P, Döring R, Vormwald M (2011) Simulation of fatigue crack growth under consideration of cyclic plasticity. Mater Wissensch Werkstofftech 42:1045–1118

    Google Scholar 

  • Zerres P, Vormwald M (2012) Finite element based simulation of fatigue crack growth with a focus on elastic-plastic material behaviour. Comp Mater Sci 57:73–79 (in press, available online: doi: 10.1016/j.commatsci.2012.01.018)

  • Zhang J, Bowen P (1998) On the finite element simulation of three-dimensional semi-circular fatigue crack growth and closure. Engng Fract Mech 60:341–60

    Google Scholar 

  • Zhao L, Tong J, Byrne J (2004) The evolution of the stress-strain fields near a fatigue crack tip and plasticity-induced crack closure revisited. Fatigue Fract Engng Mater Struct 27:19–29

    Google Scholar 

  • Zheng M, Liu HW (1986) Fatigue crack growth under general-yielding cyclic loading. J Engng Mater Technol 108:201–205

    Google Scholar 

  • Ziegler B (1959) A modification of Prager’s hardening rule. Quart Appl Math 17:55–65

    Google Scholar 

  • Ziegler B, Yamada Y, Newman JC (2008) Crack growth predictions using a strip-yield model for variable-amplitude and spectrum loading. Mater Wissensch Werkstofftech 39:711–718

    Google Scholar 

  • Zuidema J, Krabbe JP (1997) The effect of regular and irregular shear lips on fatigue crack growth in Al 2024. Fatigue Fract Engng Mater Struct 20:1413–1422

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Vormwald .

List of Symbols

A 0, A 1, A 2, A 3

Constants in Newman’s crack opening equation

a

Crack length

a 0

Initial crack length

a f

Final crack length

a eff

Effective crack length

a cd

Closure development crack length

Δa

Crack growth increment

B

Specimen thickness

B 0, B 1

Constants in DuQuesnay’s crack opening equation

C

Coefficient in Paris law

C eff

Coefficient in ΔK eff Paris law

C J

Coefficient in ΔJ Paris law

C p

Wheeler’s retardation factor

D

Miner-type damage

d

Grain size, specimen thickness

e ij

Components of deviatoric (plastic) strain tensor

E, E

Modulus of elasticity, modified for plane strain

f

Crack opening function, function in ΔJ expression

\( f_{\text{I, ij}} ,\,f_{\text{II, ij}} ,\,f_{\text{III, ij}}\)

Angular functions of near tip stress fields

G

Shear modulus

g

Influence function in crack opening analysis

h 1, h 0

Functions for geometry and hardening influence on J p

J, J e, J p

J-Integral, elastic and plastic component

ΔJ

ΔJ-integral

ΔJ eff

ΔJ-Integral with effective parameter ranges

ΔJ e

Elastic component of ΔJ-integral

ΔJ p

Plastic component of ΔJ-integral

ΔJ I, ΔJ II, ΔJ III

Mode related ΔJ-integrals

K, K

Hardening coefficient, monotonic, cyclic

K t

Stress concentration factor

K

Stress intensity factor

K I, K II, K III

Stress intensity factor, modes I, II, III

ΔK ε

Stress intensity factor range

ΔK eff

Effective stress intensity factor range

ΔK ε

Strain intensity factor range

ΔK th

Threshold stress intensity factor range

K p

Peak stress intensity factor

K op, K cl

Stress intensity factor at crack opening and closure point

K max, K min

Stress intensity factor at upper and lower reversal point

K Ic

Critical stress intensity factor for plane strain

K c

Critical stress intensity factor

K i max, K i min

Maximum and minimum stress intensity factor of cycle i

\( K_{{{\text{i}}\max }}^{*} \)

Fictitious maximum stress intensity factor of cycle i

\( K_{{{\text{i}}\max }}^{{({\text{W}})}} ,\;K_{{{\text{i}}\min }}^{{({\text{W}})}} \)

Willenborg’s stress intensity factor of cycle i

k

Factor in expression for equivalent ΔK ε

k

Factor on grain size for microstructural crack

l 0i

Bar length in strip-yield model

M J

Coefficient in ΔJ expression

m, m

Exponents in Paris law or factor in Δδ t expression

N

Number of cycles

N f

Number of cycles to failure

N i

Number of cycles to failure with block i amplitude

n i

Number of cycles in load block i

n, n

Hardening exponent, monotonic and cyclic

P, P 0

Load, ligament yield load

p

Pressure, empirical exponent

Δp

Pressure range

Δp eff

Effective pressure range

p max

Pressure at upper reversal point

p min

Pressure at lower reversal point

q

Empirical exponent

R

Stress ratio, load ratio, stress intensity factor ratio

R (W)

Willenborg’s stress intensity factor ratio

r

Radial distance

r Y

Radial distance with linear-elastic stresses above yield stress

s

Path coordinate

s ij

Components of deviatoric stress tensor

T i

Components of traction vector

U

Crack opening ratio

u, u x

Displacement in x-direction

u y

Displacement in y-direction

u i

Components of displacement vector

W

strain energy density

W x , W xy , W xz

Strain energy density portions related to coordinate system

W

Specimen width

v

Displacement in y-direction

Y

Geometry factor

x, y, z

Coordinates

z 1, z 2

Auxiliary functions in crack opening stress equation

α

Coefficient in Ramberg–Osgood relationship

α

Constraint factor in tension

β

Constraint factor in compression

γ, γ xy , γ xz

Shear strains

γa

Shear strain amplitude

Δδ t

Crack tip opening displacement range

ε, ε xx , ε yy

Normal strains

ε a

Normal strain amplitude

ε l

Local strain

ε op, ε cl

Strain at crack opening and crack closure point

ε

Normal strain in shear plane

ε 0

Reference strain in power-law relationship

ε ref

Reference strain

Δε e

Elastic strain range

Δε p

Plastic strain range

Δε eq

Equivalent strain range

η

Crack surface factor indicating effective sliding

Λ

Biaxiality ratio of far-field stresses

μ

Crack surface friction coefficient

ν

Poisson’s ratio

ρ

Notch radius

σ, σ xx , σ yy

Normal stresses

σ x0, σ y0

Far-field normal stresses

σ co

Biaxiality cut-off stress

σ 1, σ 1,max

First principal stress, its maximum value

Δσ

Stress range

Δσ eff

Effective stress range

Δσ eq

Von Mises equivalent stress range

σ ij

Components of stress tensor

σ max

Stress at upper reversal point

σ min

Stress at lower reversal point

σ ⊥max

Maximum normal stress on crack surface

σ op, σ cl

Stress at crack opening and crack closure point

σ 0

Reference stress in power-law relationship

σ res

Residual stress

σ ref

Reference stress

σ U

Ultimate tensile strength

\( \sigma_{\text{Y}} ,\,\sigma_{\text{Y}}^{'} \)

Monotonic and cyclic yield stress

θ

Polar coordinate, polar angle

τ, τ xy , τ xz

Shear stresses

τ fr

Friction shear stress on crack surface

τ fr0

Friction shear stress due to indentation

τ Y

Shear yield stresses

Δτ II

Shear stress in maximum shear strain plane

φ

Plasticity correction on crack length

φ calc

Calculated critical plane angle

ω, ω c

Plastic zone size, tensile and compressive

ω max

Maximum plastic zone size

ω cyc

Cyclic plastic zone size

ω p

Peak load plastic zone size

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vormwald, M. (2013). Elastic-Plastic Fatigue Crack Growth. In: Advanced Methods of Fatigue Assessment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30740-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30740-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30739-3

  • Online ISBN: 978-3-642-30740-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics