Model Checking as Static Analysis: Revisited

  • Fuyuan Zhang
  • Flemming Nielson
  • Hanne Riis Nielson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7321)


We show that the model checking problem of the μ-calculus can be viewed as an instance of static analysis. We propose Succinct Fixed Point Logic (SFP) within our logical approach to static analysis as an extension of Alternation-free Least Fixed Logic (ALFP). We generalize the notion of stratification to weak stratification and establish a Moore Family result for the new logic as well. The semantics of the μ-calculus is encoded as the intended model of weakly stratified clause sequences in SFP.


Model Check Logic Programming Atomic Proposition Kripke Structure Computation Tree Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)Google Scholar
  2. 2.
    Emerson, E.A., Lei, C.-L.: Efficient Model Checking in Fragments of the Propositional Mu-Calculus (Extended Abstract). In: LICS 1986, pp. 267–278 (1986)Google Scholar
  3. 3.
    Cleaveland, R., Steffen, B.: A Linear-Time Model-Checking Algorithm for the Alternation-Free Modal Mu-Calculus. Formal Methods in System Design 2(2), 121–147 (1993)zbMATHCrossRefGoogle Scholar
  4. 4.
    Andersen, H.R.: Model Checking and Boolean Graphs. Theor. Comput. Sci. 126(1), 3–30 (1994)zbMATHCrossRefGoogle Scholar
  5. 5.
    Baier, C., Katoen, J.-P.: Principles of model checking, pp. I-XVII, 1-975. MIT Press (2008)Google Scholar
  6. 6.
    Kozen, D.: Results on the Propositional mu-Calculus. Theor. Comput. Sci. 27, 333–354 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis (2. corr. print), pp. I-XXI, 1-452. Springer (2005)Google Scholar
  8. 8.
    Nielson, H.R., Nielson, F.: Flow Logic: A Multi-paradigmatic Approach to Static Analysis. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 223–244. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Steffen, B.: Data Flow Analysis as Model Checking. In: Ito, T., Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 346–365. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  10. 10.
    Steffen, B.: Generating Data Flow Analysis Algorithms from Modal Specifications. Sci. Comput. Program. 21(2), 115–139 (1993)zbMATHCrossRefGoogle Scholar
  11. 11.
    Schmidt, D.A., Steffen, B.: Program Analysis as Model Checking of Abstract Interpretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–380. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Schmidt, D.A.: Data Flow Analysis is Model Checking of Abstract Interpretations. In: POPL 1998, pp. 38–48 (1998)Google Scholar
  13. 13.
    Nielson, F., Nielson, H.R.: Model Checking Is Static Analysis of Modal Logic. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 191–205. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    De Nicola, R., Vaandrager, F.W.: Action Versus State Based Logics for Transition Systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  15. 15.
    Nielson, F., Seidl, H., Nielson, H.R.: A Succinct Solver for ALFP. Nord. J. Comput. 9(4), 335–372 (2002)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Nielson, F.: Two-Level Semantics and Abstract Interpretation. Theor. Comput. Sci. 69(2), 117–242 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Filipiuk, P., Nielson, H.R., Nielson, F.: Explicit Versus Symbolic Algorithms for Solving ALFP Constraints. Electr. Notes Theor. Comput. Sci. 267(2), 15–28 (2010)CrossRefGoogle Scholar
  18. 18.
    Nielson, H.R., Nielson, F., Pilegaard, H.: Flow Logic for Process Calculi. ACM Comput. Surv. 44(1), 3 (2012)CrossRefGoogle Scholar
  19. 19.
    Apt, K.R., Blair, H.A., Walker, A.: Towards a Theory of Declarative Knowledge. In: Foundations of Deductive Databases and Logic Programming, pp. 89–148 (1988)Google Scholar
  20. 20.
    Chandra, A.K., Harel, D.: Computable Queries for Relational Data Bases. J. Comput. Syst. Sci. 21(2), 156–178 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Zhang, F., Nielson, F., Nielson, H.R.: Fixpoints vs. Moore Families. Student Research Forum at SOFSEM 2012 (2012)Google Scholar
  22. 22.
    Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Swift, T., Warren, D.S.: Efficient Model Checking Using Tabled Resolution. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 143–154. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Ramakrishnan, C.R.: A Model Checker for Value-Passing Mu-Calculus Using Logic Programming. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 1–13. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Dong, Y., Du, X., Roychoudhury, A., Venkatakrishnan, V.N.: XMC: A Logic-Programming-Based Verification Toolset. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 576–580. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Delzanno, G., Podelski, A.: Model Checking in CLP. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Delzanno, G., Podelski, A.: Constraint-based deductive model checking. STTT 3(3), 250–270 (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fuyuan Zhang
    • 1
  • Flemming Nielson
    • 1
  • Hanne Riis Nielson
    • 1
  1. 1.DTU InformaticsTechnical University of DenmarkLyngbyDenmark

Personalised recommendations