Face Recognition from Low Resolution Images

  • Tomasz Marciniak
  • Adam Dabrowski
  • Agata Chmielewska
  • Radosław Weychan
Part of the Communications in Computer and Information Science book series (CCIS, volume 287)


This paper describes an analysis of the real-time system for face recognition from video monitoring images. First, we briefly describe main features of the standards for biometric face images. Available scientific databases have been checked for compliance with these biometric standards. Next, we concentrate on the analysis of the prepared face recognition application based on the eigenface approach. Finally, results of our face recognition experiments with images of reduced resolution are presented. It turned out that the proposed and tested algorithm is quite resistant to changing the resolution. The recognition results are acceptable even for low-resolution images (16×20 pixels).


face recognition biometric standards low resolution images 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis, M., Popov, S., Surlea, C.: Real-Time Face Recognition from Surveillance Video. In: Zhang, J., Shao, L., Zhang, L., Jones, G.A. (eds.) Intelligent Video Event Analysis and Understanding. SCI, vol. 332, pp. 155–194. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Marciniak, T., Drgas, S., Cetnarowicz, D.: Fast Face Localisation Using AdaBoost Algorithm and Identification with Matrix Decomposition Methods. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2011. CCIS, vol. 149, pp. 242–250. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Xu, Y., Jin, Z.: Down-sampling face images and low-resolution face recognition. In: The 3rd International Conference on Innovative Computing Information and Control, p. 392 (2008)Google Scholar
  4. 4.
    Zou, W.W., Yuen, P.C.: Very Low Resolution Face Recognition Problem. IEEE Transactions on Image Processing 21(1), 327–340 (2012)CrossRefGoogle Scholar
  5. 5.
    Biometrics Technology Introduction,
  6. 6.
    ISO/IEC 19794-5:2005, Information technology – Biometric data interchange formats – Part 5: Face image data (2005) Google Scholar
  7. 7.
    ANSI/INCITS 385-2004, Information technology – Face Recognition Format for Data Interchange (2004) Google Scholar
  8. 8.
    Database of the Sheffield University,
  9. 9.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23(6), 643–660 (2001)CrossRefGoogle Scholar
  10. 10.
    Milborrow, S., Morkel, J., Nicolls, F.: The MUCT Landmarked Face Database. Pattern Recognition Association of South Africa 2010 (2010),
  11. 11.
    Portion of the research in this paper use the FERET database of facial images collected under the FERET program, sponsored by the DOD Counterdrug Technology Development Program Office; Phillips, P.J., et al.: The FERET Evaluation Methodology for Face Recognition Algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 1090–1104 (2000) Google Scholar
  12. 12.
    The Face Annotation Interface,
  13. 13.
    Frischholz, R. W.: The Face Detection Homepage,
  14. 14.
    Kapur, J.P.: Face Detection in Color Images. EE499 Capstone Design Project, University of Washington Department of Electrical Engineering (1997),
  15. 15.
    Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust Face Detection Using the Hausdorff Distance. BioID AG, Berlin, Germany (2001)Google Scholar
  16. 16.
    Nilsson, M.: Face Detection algorithm for Matlab. Blekinge Institute of Technology School of Engineering Department of Signal Processing, Ronneby, Sweden (2006),
  17. 17.
    Rosa, L.: Face Recognition System 2.1 (2006),
  18. 18.
    Agarwal, M., et al.: Face Recognition using Principle Component Analysis, Eigenface and Neural Network. In: Conference on Signal Sensors, Sensors, Visualization, Imaging, Simulation and Materials (2010) Google Scholar
  19. 19.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection (1997)Google Scholar
  20. 20.
    Rzepecki, S.: Real-time localization and identification of faces in video sequences, (M.Sc. Thesis), Supervisor: Marciniak, T., Poznan University of Technology (2011) Google Scholar
  21. 21.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomasz Marciniak
    • 1
  • Adam Dabrowski
    • 1
  • Agata Chmielewska
    • 1
  • Radosław Weychan
    • 1
  1. 1.Control and System Engineering, Division of Signal Processing and Electronic SystemsPoznań University of TechnologyPoznańPoland

Personalised recommendations