Skip to main content

Application of Magnetic Microwires in Titanium Implants – Conception of Intelligent Sensoric Implant

  • Chapter
Aspects of Computational Intelligence: Theory and Applications

Abstract

The idea of intelligent sensoric implant which enables to scan parameters from the human body wireless comes from analysis of studies descrbing reasons of implants rejection or loosening. Inflamations and incorrect biomechanical load are offen the reasons for surgery, where implant has to be removed or replaced. Presented study shows a concept of intelligent dental implant, where magnetic microwires are placed and fixed into titanium dental implant to get parameters from implant, tissue, or implant-tissue interaction. A part of the study shows preparation of magnetic microwires, measurement of physical quantities using bistabile magnetic microwires and realisation of the functional model of the sensor and experiments. Obtained results show, that utilization of magnetic microwires in implants for scanning of selected physiological or physical parameters is promising. The further researches in the field of fabrication technology, magnetic wires preparation and scanning processes to confirm an intelligent sensoric implant concept is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainslie, K.M., Desai, T.A.: Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab. Chip. 8, 1864–1878 (2008)

    Article  Google Scholar 

  2. Bidanda, B., Bártolo, P.: Virtual Prototyping & Bio Manufacturing in Medical Applications. Springer Science+Business Media, ISBN: 978-0-0387-33429-5

    Google Scholar 

  3. Bistable amorphous and nanocrystalline FeCoMoB microwires. Acta Physica Polonica A 118, 809 (2010)

    Google Scholar 

  4. Botsis, J., Humbert, L., Colpo, F., Giaccari, P.: Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials. Opt. Lasers Eng. 43(3-5), 491–510 (2005)

    Article  Google Scholar 

  5. Cerny, M., Martinak, L., Penhaker, M., Rosulek, M.: Design and implementation of textile sensors for biotelemetry applications. In: Proceedings 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, NBC 2008, IFMBE Proceedings, IFMBE, vol. 20, Riga, June 16-June 20, pp. 194–197 (2008) ISSN: 16800737, ISBN: 9783540693666, doi:10.1007/978-3-540-69367-3-53

    Google Scholar 

  6. Cerny, M., Penhaker, M.: Wireless body sensor network in Health Maintenance systems. Elektronika ir Elektrotechnika (9), 113–116 (2011) ISSN: 13921215

    Google Scholar 

  7. Chiriac, H., Ovari, T.A.: Amorphous glass-covered magnetic wires: Preparation, properties, applications. Prog. Mater. Sci. 40, 333 (1996)

    Article  Google Scholar 

  8. Cverha, A., Lipovsky, P., Hudak, J., Blazek, J., Praslicka, D.: Concept of magnetometer with microwire probe. Acta Avionica (25), 22–25 (2011)

    Google Scholar 

  9. Hudak, J., Blazek, J., Cverha, A., Gonda, P., Varga, R.: Improved Sixtus- Tonks method for sensing the domain wall propagation direction. Sensor and Actuator A, 292–295 (2009)

    Google Scholar 

  10. Klein, P., Varga, R., Vazquez, M.: Temperature dependence of magnetization process in

    Google Scholar 

  11. Klein, P., Varga, R., Vojtanik, P., Kovac, J., Ziman, J., Badini-Confalonieri, G.A., Vazquez, J.: Study of the switching field in amorphous and nanocrystalline FeCoMoB microwire. Phys. D: Appl. Phys. 43, 045002 (2010)

    Article  Google Scholar 

  12. Komová, E., Varga, M., Varga, R., Vojtanik, P., Torrejon, J., Provencio, M., Vazquez, M.: Acta Physica Polonica A 113, 135 (2008)

    Google Scholar 

  13. Komová, E., Varga, M., Varga, R., Vojtaník, P., Torrejon, J., Provencio, M., Vazquez, M.: Frequency dependence of the single domain wall switching field in glass-coated microwires. J. Physics: Condensed Matter 19, 236229 (2007)

    Article  Google Scholar 

  14. Kronmüller, H., Fahnle, M.: Micromagnetism and the Microstructure of the Ferromagnetic Solids. Cambridge Univ. Press (2003)

    Google Scholar 

  15. Kubon, M., Moschallski, M., Link, G., Ensslen, T., et al.: A Microsensor System to Probe Physiologicla Environments and Tissue Response, Sensors. In: 2010 IEEE, IEEE Sensors 2010 Conference, pp. 2607–2611 (2010)

    Google Scholar 

  16. Lestari, W., Qiao, P., Hanagud, S.: Curvature mode shape-based damage assessment of carbon/epoxy composite beams. J. Intell. Mater. Syst. Struct. 18(3), 189–208 (2007)

    Article  Google Scholar 

  17. Libermann, H., Graham, C.: Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions. IEEE Trans. Magn. MAG-12(6), 921–923 (1976)

    Article  Google Scholar 

  18. Mouzakis, D., Dimogianopoulos, E., Giannikas, D.: Contact-Free Magnetoelastic Smart Microsensors With Stochastic Noise Filtering for Diagnosing Orthopedic Implant Failures. IEEE Transactions on Industrial Electronics 56(4) (April 2009)

    Google Scholar 

  19. Narayan, R.: Biomedical Materials. Springer Science+Business Media, LLC (2009) ISBN: 978-0-387-84871-6

    Google Scholar 

  20. Olivera, J., Sanchez, J.L., Prida, V.M., Varga, R., Zhukova, V., Zhukov, A., Hernando, B.: Temperature Dependence of the Magnetization Reversal Process and Domain structure in Fe77.5-xNixSi7.5B15. Magnetic Microwires IEEE Trans. Magn. 44, 3946 (2008)

    Article  Google Scholar 

  21. Oshida, Y.: Bioscience and Bioengineering of Titanium Materials, 1st edn. Elsevier (2001) ISBN-13:978-0-08-045142-8

    Google Scholar 

  22. Sabol, R., Varga, R., Blazek, J., Hudak, J., Praslicka, D., et al.: Temperature and frequency dependences of the switching field in glass-coated FeNbSiB microwires. In: SMM 2011, pp. S03–P237 (2011)

    Google Scholar 

  23. Sabol, R., Varga, R., Blazek, J., Hudak, J., Praslicka, D., et al.: Stress dependence of switching field in glass-coated microwires. In: ANMM 2011 – Amorphous and Nanostructured Magnetics Materials, p. 5 (2011)

    Google Scholar 

  24. Skapa, J., Látal, J., Penhaker, M., Koudelka, P., Hancek, F., Vasinek, V.: Optical fiber distributed temperature sensor in cardiological surgeries. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 7726, art. no. 77261V, Sponsor: The Society of Photo-Optical Instrumentation Engineers (SPIE); B-PHOT-Brussels Photonics Team; Brussels-Capital Region; Fonds Wetenschappelijk Onderzoek (FWO); International Commission for Optics (ICO); Ville de Bruxelles, April 12-April 15, Brussels (2010) ISSN: 0277786X, ISBN: 9780819481993, doi: 10.1117/12.854309

    Google Scholar 

  25. Varga, R., Garcia, K.L., Vazquez, M., Zhukov, A., Vojtanik, P.: Switching-field distribution in amorphous magnetic bistable microwires. Physical Review B 70, 024402 (2004)

    Article  Google Scholar 

  26. Varga, R., Garcia, K.L., Zhukov, A., Vazquez, M., Vojtanik, P.: Temperature dependence of the switching field and its distribution function in Fe-based bistable microwires. Appl. Phys. Lett. 83, 2620 (2003)

    Article  Google Scholar 

  27. Varga, R., Garcia, K.L., Luna, C., Zhukov, A., Vojtanik, P., Vazquez, M.: Distribution and temperature dependence of switching field in bistable magnetic amorphous microwires. Recent Research Development in Non-Crystalline Solids 3, 85 (2003) Ed. Transworld Research Network, ISBN: 81-7895-090-1

    Google Scholar 

  28. Varga, R., Zhukov, A., Blanco, J.M., Ipatov, M., Zhukova, V., Gonzalez, J., Vojtaník, P.: Supersonic domain wall in magnetic microwires. Physical Review B 76, 132406 (2007)

    Article  Google Scholar 

  29. Varga, R., Zhukov, A., Ipatov, A., Blanco, J.M., Gonzalez, J., Zhukova, V., Vojtaník, P.: Thermal activation over a complex energy barrier in bistable microwires. Physical Review B 73, 053605 (2006)

    Article  Google Scholar 

  30. Vazquez, M.: Advanced magnetic microwires. In: Kronmüller, H., Parkin, S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials, p. 221. John Wiley & Sons (2007)

    Google Scholar 

  31. Vazquez, M., Badini, G., Pirota, K., Torrejon, J., Zhukov, A., Torcunov, A., Pfuetzner, H., Rohn, M., Merlo, A., Marquardt, B., Meydan, T.: Magnetization reversal process in bistable microwires and its temperature dependence. Int. J. Appl. Electromagnetics and Mechanics 25, 441 (2007)

    Google Scholar 

  32. Vojtanik, P., Degro, J., Nielsen, O.V.: Magnetic Aftereffects in CoFeSiB Metallic Glasses. Acta Phys. Slov. 42, 364 (1992)

    Google Scholar 

  33. Zhukov, A., Gonzalez, J., Vazquez, M., Larin, V., Torcunov, A.: Nanocrystalline and amorphous magnetic microwires. In: Nalwa, H.S. (ed.) Encyclopedia of Nanoscience and Nanotechnology, ch. 62, p. 365. American Scientific Publishers, New York (2004)

    Google Scholar 

  34. Zhukov, A., Vázquez, M., Velázquez, J., Garcia, C., Valenzuela, R., Ponomarev, B.: Frequency dependence of coercivity in rapidly quenched amorphous materials. Materials Science and Engineering A 226-228, 753 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Hudák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hudák, R., Varga, R., Živčák, J., Hudák, J., Blažek, J., Praslička, D. (2013). Application of Magnetic Microwires in Titanium Implants – Conception of Intelligent Sensoric Implant. In: Madarász, L., Živčák, J. (eds) Aspects of Computational Intelligence: Theory and Applications. Topics in Intelligent Engineering and Informatics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30668-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30668-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30667-9

  • Online ISBN: 978-3-642-30668-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics