Skip to main content

Dynamic Combinatorial Optimization Problems: A Fitness Landscape Analysis

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 433))

Abstract

The role of representations and variation operators in evolutionary computation is relatively well understood for the case of static optimization problems thanks to a variety of empirical studies as well as some theoretical results. In the field of evolutionary dynamic optimization very few studies exist to date that explicitly analyse the impact of these elements on the algorithm’s performance. In this chapter we utilise the fitness landscape metaphor to review previous work on evolutionary dynamic combinatorial optimization. This review highlights some of the properties unique to dynamic combinatorial optimization problems and paves the way for future research related to these important issues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenberg, L.: Fitness distance correlation analysis: An instructive counter-example. In: ICGA, pp. 57–64 (1997)

    Google Scholar 

  2. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. CRC Press (1997)

    Google Scholar 

  3. Borenstein, Y., Poli, R.: Information landscapes. In: GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1515–1522. ACM, New York (2005)

    Chapter  Google Scholar 

  4. Bosman, P.A.N.: Learning, anticipation and time-deception in evolutionary online dynamic optimization. In: Proceedings of the 2005 Workshop on Genetic and Evolutionary Computation, pp. 39–47 (2005)

    Google Scholar 

  5. Bosman, P.A.N., Poutrè, H.L.: Learning and anticipation in online dynamic optimization with evolutionary algorithms: the stochastic case. In: Proceedings of the 2007 Genetic and Evolutionary Computation Conference, pp. 1165–1172 (2007)

    Google Scholar 

  6. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation, vol. 3, pp. 1875–1882. IEEE (1999)

    Google Scholar 

  7. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer (2002)

    Google Scholar 

  8. Branke, J., Orbayı, M., Uyar, Ş.: The Role of Representations in Dynamic Knapsack Problems. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 764–775. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Branke, J., Salihoglu, E., Uyar, S.: Towards an analysis of dynamic environments. In: Beyer, H.-G., et al. (eds.) Genetic and Evolutionary Computation Conference, pp. 1433–1439. ACM (2005)

    Google Scholar 

  10. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependant nonstationary environments. Technical report, Naval Research Laboratory, Washington, USA (1990)

    Google Scholar 

  11. Dasgupta, D., McGregor, D.R.: Nonstationary function optimization using the structured genetic algorithm. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving from Nature, vol. 2, pp. 145–154. Elsevier, Amsterdam (1992)

    Google Scholar 

  12. De Jong, K.: Evolving in a Changing World. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1999. LNCS, vol. 1609, pp. 512–519. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Droste, S., Jansen, T., Tinnefeld, K., Wegener, I.: A new framework for the valuation of algorithms for black-box optimization. In: Proceedings of the Seventh Foundations of Genetic Algorithms Workshop (FOGA), pp. 197–214 (2002)

    Google Scholar 

  14. Droste, S., Jansen, T., Wegener, I.: Optimization with randomized search heuristics – the (a)nfl theorem, realistic scenarios, and difficult functions. Theoretical Computer Science 287 (2002)

    Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979)

    Google Scholar 

  16. Gaspar, A., Collard, P.: From GAs to artificial immune systems: Improving adaptation in time dependent optimization. In: Proceedings of the IEEE International Congress on Evolutionary Computation, pp. 1867–1874 (1999)

    Google Scholar 

  17. Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: Grefenstette, J.J. (ed.) Second International Conference on Genetic Algorithms, pp. 59–68. Lawrence Erlbaum Associates (1987)

    Google Scholar 

  18. Hadad, B.S., Eick, C.F.: Supporting Polyploidy in Genetic Algorithms Using Dominance Vectors. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 223–234. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  19. He, J., Reeves, C., Witt, C., Yao, X.: A note on problem difficulty measures in black-box optimization: Classification, realizations and predictability. Evolutionary Computation 15(4), 435–443 (2007)

    Article  Google Scholar 

  20. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environment - a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

    Article  Google Scholar 

  21. Jones, T.: Evolutionary algorithms, fitness landscapes and search. PhD thesis, Citeseer (1995)

    Google Scholar 

  22. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192 (1995)

    Google Scholar 

  23. Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search landscapes. In: Theoretical Aspects of Evolutionary Computing, pp. 175–206 (2001)

    Google Scholar 

  24. Kauffman, S.A.: The Origins of Order. Oxford University Press (1993)

    Google Scholar 

  25. Leguizamon, G., Blum, C., Alba, E.: Evolutionary Computation. In: Handbook of Approximation Algorithms and Metaheuristics, pp. 24.1–24.X. CRC Press (2007)

    Google Scholar 

  26. Liepins, G.E., Vose, M.D.: Representational issues in genetic optimization. Journal of Experimental & Theoretical Artificial Intelligence 2(2), 101–115 (1990)

    Article  Google Scholar 

  27. Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments. Springer, Berlin (2004)

    MATH  Google Scholar 

  28. Morrison, R.W., De Jong, K.A.: A test problem generator for non-stationary environments. In: Congress on Evolutionary Computation, vol. 3, pp. 2047–2053. IEEE (1999)

    Google Scholar 

  29. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover (1998)

    Google Scholar 

  30. Raidl, G.R., Gottlieb, J.: Empirical analysis of locality, heritability and heuristic bias in evolutionary algorithms: A case study for the multidimensional knapsack problem. Evolutionary Computation 13(4), 441–475 (2005)

    Article  Google Scholar 

  31. Reeves, C.R.: Landscapes, operators and heuristic search. Annals of Operations Research 86, 473–490 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Richter, H.: Evolutionary Optimization and Dynamic Fitness Landscapes. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds.) Evolutionary Algorithms and Chaotic Systems. SCI, vol. 267, pp. 409–446. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  33. Rohlfshagen, P., Yao, X.: Dynamic combinatorial optimization problems: An analysis of the subset sum problem. To appear in Soft Computing

    Google Scholar 

  34. Rohlfshagen, P., Yao, X.: Attributes of Dynamic Combinatorial Optimisation. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 442–451. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  35. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Springer (2002)

    Google Scholar 

  36. Schaffer, J.D., Caruana, R.A., Eshelman, L.J., Das, R.: A study of control parameters affecting online performance of genetic algorithms for function optimization. In: Proceedings of the Third International Conference on Genetic Algorithms, pp. 51–60. Morgan Kaufmann Publishers Inc. (1989)

    Google Scholar 

  37. Schnier, T., Yao, X.: Using multiple representations in evolutionary algorithms. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 479–486. IEEE Press (2000)

    Google Scholar 

  38. Thompson, R.K., Wright, A.H.: Additively decomposable fitness functions. Technical report, University of Montana, Computer Science Department (1996)

    Google Scholar 

  39. Tinos, R., Yang, S.: Continuous dynamic problem generators for evolutionary algorithms. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation, pp. 236–243 (2007)

    Google Scholar 

  40. Tinós, R., Yang, S.: An Analysis of the XOR Dynamic Problem Generator Based on the Dynamical System. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 274–283. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  41. Uyar, Ş., Uyar, H.: A Critical Look at Dynamic Multi-dimensional Knapsack Problem Generation. In: Applications of Evolutionary Computing, pp. 762–767 (2009)

    Google Scholar 

  42. Wang, H., Yang, S., Ip, W.H., Wang, D.: Adaptive primal-dual genetic algorithms in dynamic environments. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics 39(6), 1348–1361 (2009)

    Article  Google Scholar 

  43. Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-boolean functions. In: Evolutionary Optimization, pp. 349–369 (2002)

    Google Scholar 

  44. Weicker, K.: Evolutionary Algorithms and Dynamic Optimization Problems. Der Andere Verlag (2003)

    Google Scholar 

  45. Woldesenbet, Y.G., Yen, G.G.: Dynamic evolutionary algorithm with variable relocation. IEEE Transactions on Evolutionary Computation 13(3), 500–513 (2009)

    Article  Google Scholar 

  46. Wolpert, D.H., MacReady, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  47. Yamasaki, K., Kitakaze, K., Sekiguchi, M.: Dynamic optimization by evolutionary algorithms applied to financial time series. In: Proceedings of the 2002 Congress on Evolutionary Computation (2002)

    Google Scholar 

  48. Yang, S.: PDGA: the primal-dual genetic algorithm. In: Design and Application of Hybrid Intelligent Systems, pp. 214–223. IOS Press (2003)

    Google Scholar 

  49. Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithms. In: Sarker, R., Reynolds, R., Abbass, H., Tan, K.-C., McKay, R., Essam, D., Gedeon, T. (eds.) Proceedings of the 2003 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2246–2253 (2003)

    Google Scholar 

  50. Yang, S.: Memory-enhanced univariate marginal distribution algorithms for dynamic optimization problems. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2560–2567 (2005)

    Google Scholar 

  51. Yang, S., Yao, X.: Population-based incremental learning with associative memory for dynamic environments. IEEE Transactions on Evolutionary Computation 12(5), 542–561 (2008)

    Article  Google Scholar 

  52. Younes, A., Calamai, P., Basir, O.: Generalized benchmark generation for dynamic combinatorial problems. In: Proceedings of the 2005 Workshop on Genetic and Evolutionary Computation, pp. 25–31 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Rohlfshagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rohlfshagen, P., Yao, X. (2013). Dynamic Combinatorial Optimization Problems: A Fitness Landscape Analysis. In: Alba, E., Nakib, A., Siarry, P. (eds) Metaheuristics for Dynamic Optimization. Studies in Computational Intelligence, vol 433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30665-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30665-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30664-8

  • Online ISBN: 978-3-642-30665-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics