The Rhizosphere: Molecular Interactions Between Microorganisms and Roots

  • R. HamppEmail author
  • A. Hartmann
  • U. Nehls
Part of the Ecological Studies book series (ECOLSTUD, volume 220)


The rhizosphere has a large impact on plant performance in several ways. A stand-specific, more or less high diversity of microorganisms not only supports the plant in the acquisition of water and nutrients, but also modulates its ability to cope with pathogens. This diversity, however, has to be maintained and thus causes a considerable drain of photoassimilates, which are then not available for shoot development. In this chapter, we try to explain why the considerable allocation of carbon to the root system is a “wise” decision by the plant. We thus focus on the function of root-associated bacteria and their relevance for plant growth and development of disease resistance, and deliver data on the molecular basis of the root–fungus symbiosis (mycorrhiza).


Plant Growth Promote Rhizobacteria Arbuscular Mycorrhizae Disease Suppression Sulfate Uptake Systemic Acquire Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



As far as own research has been addressed, financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged. We are indebted to Nina Lehr, Silvia Schrey, and Mika Tarkka for their input, and to Reinhard Agerer for critical reading and many helpful suggestions. GB 4-2 was isolated by K. Poralla (University of Tübingen).


  1. Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114Google Scholar
  2. Aquino TM, Plassard C (2004) Dynamics of ectomycorrhizal growth and P transfer to the host plant in response to low and high soil P availability. FEMS Microbiol Ecol 48:149–156Google Scholar
  3. Artursson V, Finlay RD, Jansson JK (2005) Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol 17:1952–1966Google Scholar
  4. Badge US, Prasad R, Varma A (2010) Interaction of mycobiont: Piriformospora indica with medicinal plants and plants of economic importance. Afr J Biotechnol 9:9214–9226Google Scholar
  5. Bakker PA, Pieterse CM, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243PubMedGoogle Scholar
  6. Banerjee MR, Chapman SJ, Killham K (1999) Uptake of fertilizer sulfur by maize from soils of low sulfur status as affected by vesicular-arbuscular mycorrhizae. Can J Soil Sci 79:557–559Google Scholar
  7. Barbosa PG (2004) Identifizierung und molekulare Charakterisierung von Phosphataufnahmesystemen des Ektomykorrhizapilzes Amanita muscaria. Dissertation, Eberhard-Karls University, TuebingenGoogle Scholar
  8. Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778PubMedGoogle Scholar
  9. Barriuso J, Pereyra MT, Lucas García JA, Megías M, Gutiérrez Mañero FJ, Ramos B (2005) Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosusPinus sp. Microb Ecol 50:82–89PubMedGoogle Scholar
  10. Berdy J (2005) Bioactive microbial metabolites: a personal view. J Antibiot 58:1–26PubMedGoogle Scholar
  11. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13PubMedGoogle Scholar
  12. Bertaux J, Schmid M, Chemidlin Prevost-Boure N, Churin JL, Hartmann A, Garbaye J, Frey-Klett P (2003) In situ identification of intracellular bacteria related to Paenibacillus sp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Appl Environ Microbiol 69:4243–4248PubMedPubMedCentralGoogle Scholar
  13. Bertaux J, Schmid M, Hutzler P, Hartmann A, Garbaye J, Frey-Klett P (2005) Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Environ Microbiol 7:1786–1795PubMedGoogle Scholar
  14. Bianciotto V, Genre A, Jargeat P, Lumini E, Bécard G, Bonfante P (2004) Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through vegetative spore generations. Appl Environ Microbiol 70:3600–3608PubMedPubMedCentralGoogle Scholar
  15. Bieleski RL (1973) Phosphate pools, phosphate transport and phosphate availability. Ann Rev Plant Physiol 24:225–252Google Scholar
  16. Blaha D, Prigent-Combaret C, Mirza MS, Moenne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470PubMedGoogle Scholar
  17. Blasius D, Feil W, Kottke I, Oberwinkler F (1986) Hartig net structure and formation of fully ensheated ectomycorrhizas. Nord J Bot 6:837–842Google Scholar
  18. Bonfante P, Anca J-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedGoogle Scholar
  19. Bruce TJ, Pickett JA (2007) Plant defence signalling induced by biotic attacks. Curr Opin Plant Biol 10:387–92PubMedGoogle Scholar
  20. Brulé C, Frey-Klett P, Pierrat JC, Courrier S, Gérard F, Lemoine MC, Rousselet JL, Sommer J, Garbaye J (2001) Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and effect of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol Biochem 33:1683–1694Google Scholar
  21. Buee M, Courty PE, Mignot D, Garbaye J (2007) Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biol Biochem 39:1947–1955Google Scholar
  22. Buee M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes. Mycorrhiza 15:235–245PubMedGoogle Scholar
  23. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100(Suppl 2):14555–14561PubMedPubMedCentralGoogle Scholar
  24. Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci 11:263–266PubMedGoogle Scholar
  25. Chamberlain K, Crawford DL (1999) In vitro and vivo antagonism of pathogenic turfgrass fungi by Streptomyces hygroscopicus strains YCED9 and WYE53. J Ind Microbiol Biotechnol 23:641–646PubMedGoogle Scholar
  26. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009a) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37PubMedGoogle Scholar
  27. Chen XH, Scholz R, Borriss M, Junge H, Mögel G, Kunz S, Borriss R (2009b) Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol 140:38–44PubMedGoogle Scholar
  28. Cocito C, Di Giambattista M, Nyssen E, Vannuffel P (1997) Inhibition of protein synthesis by streptogramins and related antibiotics. J Antimicrob Chemother 39:7–13PubMedGoogle Scholar
  29. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959PubMedPubMedCentralGoogle Scholar
  30. Conn VM, Walker AR, Franco CM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant Microbe Interact 21:208–18PubMedGoogle Scholar
  31. Conrath U (2006) Systemic acquired resistance. Plant Signal Behav 1:179–184PubMedPubMedCentralGoogle Scholar
  32. Conrath U, Pieterse CM, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–16PubMedGoogle Scholar
  33. Cooley M, Chhabra SR, Williams P (2008) N-Acylhomoserine lactone-mediated quorum sensing: a twist in the tail and a blow for host immunity. Chem Biol 15:1141–1147PubMedGoogle Scholar
  34. Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608PubMedPubMedCentralGoogle Scholar
  35. Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdins. Environ Microbiol 4:787–798PubMedGoogle Scholar
  36. Corratge C, Zimmermann S, Lambilliotte R, Plassard C, Marmeisse R, Thibaud JB, Lacombe B, Sentenac H (2007) Molecular and functional characterization of a Na+-K+ transporter from the Trk family in the ectomycorrhizal fungus Hebeloma cylindrosporum. J Biol Chem 282:26057–26066PubMedGoogle Scholar
  37. Courty P-E, Breda N, Garbaye J (2007) Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil Biol Biochem 39:1655–1663Google Scholar
  38. Courty P-E, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319PubMedGoogle Scholar
  39. Couturier J, Montanini B, Martin F, Brun A, Blaudez D, Chalot M (2007) The expanded family of ammonium transporters in the perennial poplar plant. New Phytol 174:137–150PubMedGoogle Scholar
  40. Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905PubMedPubMedCentralGoogle Scholar
  41. Cruz C, Egsgaard H, Trujillo C, Ambus P, Requena N, Martins-Loucao MA, Jakobsen I (2007) Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. Plant Physiol 144:782–792PubMedPubMedCentralGoogle Scholar
  42. Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL, Pierce NE, Ausübel FM (2005) Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci USA 102:1791–96PubMedPubMedCentralGoogle Scholar
  43. Davelos AL, Kinkel LL, Samac DA (2004) Spatial variation in frequency and intensity of antibiotic interactions among Streptomycetes from prairie soil. Appl Environ Microbiol 70:1051–58PubMedPubMedCentralGoogle Scholar
  44. De Almeida CV, Andreote FD, Yara R, Tanaka FAO, Azevedo JL, de Almeida M (2009) Bacteriosomes in axenic plants: endophytes as stable endosymbionts. World J Microbiol Biotechnol. doi: 10.1007/s11274-009-0073-8
  45. Delalande L, Faure D, Raffoux A, Uroz S, D’Angelo-Picard C, Elasri M, Carlier A, Berruyer R, Petit A, Williams P, Dessaux Y (2005) N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiol Ecol 52:13–20PubMedGoogle Scholar
  46. Deveau A, Kohler A, Frey-Klett P, Martin F (2008) The major pathways of carbohydrate metabolism in the ectomycorrhizal basidiomycete Laccaria bicolor S238N. New Phytol 180:379–390PubMedGoogle Scholar
  47. Deveau A, Palin B, Delaruelle C, Peter M, Kohler A, Pierrat JC, Sarniguet A, Garbaye J, Martin F, Frey-Klett P (2007) The mycorrhizal helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 175:743–755PubMedGoogle Scholar
  48. Dobbelaere S, Croonenborghs A, Amber T, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguiire JF, Kapulnik Y, Shimon B, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879Google Scholar
  49. Dobbelaere S, Okon Y (2007) The plant growth-promoting effect and plant responses. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanonbacterial associations. Springer, Dordrecht, pp 145–170Google Scholar
  50. Dunne C, Moenne-Loccoz Y, de Bruijn F, O’Gara F (2000) Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology 146:2069–2078PubMedGoogle Scholar
  51. Duplessis S, Courty PE, Tagu D, Martin F (2005) Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol 165:599–611PubMedGoogle Scholar
  52. Eberl L (1999) N-Acyl homoserine lactone-mediated gene regulation in Gram-negative bacteria. Syst Appl Microbiol 22:493–506PubMedGoogle Scholar
  53. Eckwall EC, Schottel JL (1997) Isolation and characterization of an antibiotic produced by the scab disease-suppressive Streptomyces diastatochromogenes strain PonSSII. J Ind Microbiol Biotechnol 19:220–225PubMedGoogle Scholar
  54. El-Abyad MS, El-Sayed MA, El-Shanshoury AR, El-Sabbagh SM (1993) Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant Soil 149:185–195Google Scholar
  55. Fajardo Lopez M, Dietz S, Grunze N, Bloschies J, Weiss M, Nehls U (2008) The sugar porter gene family of Laccaria bicolor: function in ectomycorrhizal symbiosis and soil-growing hyphae. New Phytol 180:365–378Google Scholar
  56. Fajardo López M, Männer P, Willmann A, Hampp R, Nehls U (2007) Increased trehalose biosynthesis in Hartig net hyphae of ectomycorrhizas. New Phytol 74:389–398Google Scholar
  57. Fiedler HP, Krastel P, Muller J, Gebhardt K, Zeeck A (2001) Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol Lett 196:147–151PubMedGoogle Scholar
  58. Firn RD, Jones CG (2000) The evolution of secondary metabolism – a unifying model. Mol Microbiol 37:989–994PubMedGoogle Scholar
  59. Frey-Klett P, Chavarte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti M, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328PubMedGoogle Scholar
  60. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedGoogle Scholar
  61. Galagan JE, Henn MR, Ma L-J, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15:1620–1631PubMedGoogle Scholar
  62. Gantner S, Schmid M, Dürr C, Schuhegger R, Steidle A, Hutzler P, Langebartels C, Eberl L, Hartmann A, Dazzo FB (2006) In situ spatial scale of calling distances and population density-independent N-Acylhomoserine lactone mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol 56:188–194PubMedGoogle Scholar
  63. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68PubMedGoogle Scholar
  64. Götz C, Fekete A, Gebefuegi I, Forczek S, Fuksová K, Li X, Englmann M, Gryndler M, Hartmann A, Matucha M, Schmitt-Kopplin P, Schröder P (2007) Uptake, degradation and chiral discrimination of N -acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal Bioanal Chem 389:1447–1457PubMedGoogle Scholar
  65. Gray LE, Gerdemann JW (1972) Uptake of sulphur-35 by vesicular-arbuscular mycorrhizae. Plant Soil 39:687–698Google Scholar
  66. Grichko VP, Glick BR (2001) Ameloriation of flooding stress by ACC deaminase-containing plant growth production. Plant Physiol Biochem 39:11–18Google Scholar
  67. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319PubMedGoogle Scholar
  68. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  69. Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14Google Scholar
  70. Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–255Google Scholar
  71. Hense BA, Kuttler C, Mueller J, Rothballer M, Hartmann A, Kreft J-U (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239PubMedGoogle Scholar
  72. Herschbach C, Rennenberg H (1994) Influence of glutathione (gsh) on net uptake of sulphate and sulphate transport in tobacco plants. J Exp Bot 45:1069–1076Google Scholar
  73. Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landw Ges 98:59–78Google Scholar
  74. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes. Plant Soil 237:173–195Google Scholar
  75. Hogan DA, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223PubMedGoogle Scholar
  76. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Env Microbiol 72:1719–28Google Scholar
  77. Jany JL, Martin F, Garbaye J (2003) Respiration activity of ectomycorrhizas from Cenococcum geophilum and Lactarius sp. in relation to soil water potential in five beech forests. Plant Soil 255:487–494Google Scholar
  78. Jargeat P, Cosseau C, Ola’h B, Jauneau A, Bonfante P, Batut J, Bécard G (2004) Isolation, free-living capacities and genome structure of Candidatus Glomeribacter gigasporarum, the endocellular bacteria of the mycorrhizal fungus Gigaspora margarita. J Bacteriol 186:6876–6884PubMedPubMedCentralGoogle Scholar
  79. Johansson T, Le Quèrè A, Ahren D, Söderström B, Erlandsson R, Lundeberg J, Uhlen M, Tunlid A (2004) Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue. Mol Plant Microb Interact 17:202–215Google Scholar
  80. Kemppainen M, Duplessis S, Martin F, Pardo AG (2008) T-DNA insertion, plasmid rescue and integration analysis in the model mycorrhizal fungus Laccaria bicolor. Microb Biotechnol 1:258–269PubMedPubMedCentralGoogle Scholar
  81. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886Google Scholar
  82. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266PubMedGoogle Scholar
  83. Kottke I, Oberwinkler F (1987) The cellular structure of the Hartig net: coenocytic and transfer cell-like organization. Nord J Bot 7:85–95Google Scholar
  84. Koumoutsi A, Chen X-H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096PubMedPubMedCentralGoogle Scholar
  85. Kowallik W, Thiemann M, Huang Y, Mutumba G, Beermann L, Broer D, Grotjohann N (1998) Complete sequence of glycolytic enzymes in the mycorrhizal basidiomycete, Suillus bovinus. Z Naturforsch 53:818–827Google Scholar
  86. Kredich NM (1993) Gene regulation of sulfur assimilation. In: DeKok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur nutrition and sulfur assimilation in higher plants. SPB, The Hague, pp 61–76Google Scholar
  87. Kreuzwieser J, Herschbach C, Rennenberg H (1996) Sulphate uptake and xylem loading of non-mycorrhizal excised roots of young beech (Fagus sylvatica) trees. Plant Physiol Biochem 34:409–416Google Scholar
  88. Kreuzwieser J, Rennenberg H (1998) Sulphate uptake and xylem loading of mycorrhizal beech roots. New Phytol 140:319–329Google Scholar
  89. Küster H, Becker A, Firnhaber C, Hohnjec N, Manthey K, Perlick AM, Bekel T, Dondrup M, Henckel K, Goesmann A, Meyer F, Wipf D, Requena N, Hildebrandt U, Hampp R, Nehls U, Krajinski F, Franken P, Pühler A (2007) Development of bioinformatic tools to support EST-sequencing, in silico- and microarray-based transcriptome profiling in mycorrhizal symbioses. Phytochemistry 68:19–32PubMedGoogle Scholar
  90. Lappartient AG, Vidmar JJ, Leustek T, Glass ADM, Touraine B (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18:89–95PubMedGoogle Scholar
  91. Laurent P, Voiblet C, Tagu D, de Carvalho D, Nehls U, De Bellis R, Balestrini R, Bauw G, Bonfante P, Martin F (1999) A novel class of ectomycorrhiza-regulated cell wall polypeptides in Pisolithus tinctorius. Mol Plant Microb Interact 12:862–871Google Scholar
  92. Le Quere A, Wright D, Soederstroem B, Tunlid A, Johansson T (2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula roth.) and Paxillus involutus (batsch) Fr. Mol Plant Microb Interact 18:659–673Google Scholar
  93. Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol 174:892–903PubMedGoogle Scholar
  94. Lehr NA, Schrey SD, Hampp R, Tarkka MT (2008) Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytol 177:965–76PubMedGoogle Scholar
  95. Leveau JHJ, Gerards S (2008) Discovery of a bacterial gene cluster for catabolism of the plant hormone indole-3-acetic acid. FEMS Microbiol Ecol 65:238–250PubMedGoogle Scholar
  96. Liras P (1999) Biosynthesis and molecular genetics of cephamycins. Cephamycins produced by actinomycetes. Antonie Leeuwenhoek 75:109–124PubMedGoogle Scholar
  97. Liu D, Anderson NA, Kinkel LL (1995) Biological control of potato scab in the field with antagonistic Streptomyces scabies. Phytopathology 85:827–831Google Scholar
  98. Loria R, Bukhalid RA, Fry BA, King RR (1997) Plant pathogenicity in the genus Streptomyces. Plant Dis 81:836–846Google Scholar
  99. Loria R, Kers J, Joshi M (2006) Evolution of plant pathogenicity in Streptomyces. Annu Rev Phytopathol 44:469–87PubMedGoogle Scholar
  100. Lucic E, Fourrey C, Kohler A, Martin F, Chalot M, Brun-Jacob A (2008) A gene repertoire for nitrogen transporters in Laccaria bicolor. New Phytol 180:343–364PubMedGoogle Scholar
  101. Lucy M, Reed E, Glick BR (2004) Application of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86:1–25PubMedGoogle Scholar
  102. Lumini E, Ghignone S, Bianciotto V, Bonfante P (2007) Endobacteria or bacterial symbionts? To be or not to be. New Phytol 170:205–208Google Scholar
  103. Maier A, Riedlinger J, Fiedler H-P, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycol Progr 3:129–36Google Scholar
  104. Mansouri-Bauly H, Sýkorová Z, Scheerer U, Kopriva S (2006) Sulfur uptake in the ectomycorrhizal fungus Laccaria bicolor S238N. Mycorrhiza 16:421–427PubMedGoogle Scholar
  105. Marilley L, Hartwig UA, Aragno M (1999) Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb Ecol 38:39–49PubMedGoogle Scholar
  106. Martin F, Aerts A, Ahrén D, Brun A, Duchaussoy F, Kohler A, Lindquist E, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Danchin EGJ, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Gibon J, Grimwood J, Hoegger P, Jain P, Kilaru S, Labbé J, Lin Y, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Pereda V, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, Van de Peer Y, Podila G, Polle A, Pukkila PJ, Richardson PM, Rouzé P, Sanders I, Stajich JE, Tunlid A, Tuskan G, Grigoriev I (2008) The genome sequence of the basidiomycete fungus Laccaria bicolor provides insights into the mycorrhizal symbiosis. Nature 452:88–92PubMedGoogle Scholar
  107. Martin F, Canet D, Marchal JP (1985) 13C nuclear magnetic resonance study of mannitol cycle and trehalose synthesis during glucose utilization by the ectomycorrhizal ascomycete Cenococcum geophilum. Plant Physiol 77:499–502PubMedPubMedCentralGoogle Scholar
  108. Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol 12:508–515PubMedGoogle Scholar
  109. Martin F, Tunlid A (2009) The ectomycorrhizal symbiosis: a marriage of convenience. In: Deising HB (ed) The mycota, vol V, 2nd edn, Plant relationships. Springer, Heidelberg, pp 237–257Google Scholar
  110. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530Google Scholar
  111. Menotta M, Amicucci A, Sisti D, Gioacchini AM, Stocchi V (2004) Differential gene expression during pre-symbiotic interaction between Tuber borchii vittad. and Tilia americana l. Curr Genet 46:158–165PubMedGoogle Scholar
  112. Morel M, Jacob C, Fitz M, Wipf D, Chalot M, Brun A (2008) Characterization and regulation of PiDur3, a permease involved in the acquisition of urea by the ectomycorrhizal fungus Paxillus involutus. Fungal Genet Biol 45:912–921PubMedGoogle Scholar
  113. Morel M, Jacob J, Kohler A, Johansson A, Martin F, Chalot M, Brun A (2005) Identification of genes differentially expressed in extraradical mycelium and ectomycorrhizal roots during Paxillus involutus-Betula pendula ectomycorrhizal symbiosis. Appl Environ Microbiol 71:382–391PubMedPubMedCentralGoogle Scholar
  114. Morgan JAW, Morgan G, Bending D, White PJ (2005) Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739PubMedGoogle Scholar
  115. Müller T, Avolio M, Olivi M, Benjdia M, Rikirsch E, Kasaras A, Fitz M, Chalot M, Wipf D (2007) Nitrogen transport in the ectomycorrhiza association: the Hebeloma cylindrosporum-Pinus pinaster model. Phytochemistry 68:41–51PubMedGoogle Scholar
  116. Nabti E, Sahnoune M, Adjrad S, Van Dommelen A, Ghoul M, Schmid M, Hartmann A (2007) A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Eng Life Sci 7:354–360Google Scholar
  117. Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29:6–22Google Scholar
  118. Nakayama T, Homma Y, Hashidoko Y, Mitzutani J, Tahara S (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334–4339PubMedPubMedCentralGoogle Scholar
  119. Neeno-Eckwall EC, Kinkel LL, Schottel JL (2001) Competition and antibiosis in the biological control of potato scab. Can J Microbiol 47:332–340PubMedGoogle Scholar
  120. Nehls U (2008) Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot 59:1097–1108PubMedGoogle Scholar
  121. Nehls U, Grunze N, Willmann M, Reich M, Küster H (2007) Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochemistry 68:82–91PubMedGoogle Scholar
  122. Nuutinen JT, Timonen S (2008) Identification of nitrogen mineralization enzymes, l-amino acid oxidases, from the ectomycorrhizal fungi Hebeloma spp. and Laccaria bicolor. Mycol Res 112:1453–1464PubMedGoogle Scholar
  123. Nygren CMR, Eberhardt U, Karlsson M, Parrent JL, Lindahl BD, Taylor AFS (2008) Growth on nitrate and occurrence of nitrate reductase-encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. New Phytol 180:875–889PubMedGoogle Scholar
  124. Oelmüller R, Sherameti I, Tripathi S, Varma A (2009) Piriformopsora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–18Google Scholar
  125. Ongena M, Jourdan E, Schäfer M, Kech C, Budzikiewicz H, Luxen A, Thonart P (2005) Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol Plant Microbe Interact 18:562–569PubMedGoogle Scholar
  126. Ono BI, Hazu T, Yoshida S, Kawato T, Shinoda S, Brzvwczy J, Paszewski A (1999) Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation. Yeast 15:1365–1375PubMedGoogle Scholar
  127. Opelt K, Berg G (2004) Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the baltic sea coast. Appl Environ Microbiol 70:6569–6579PubMedPubMedCentralGoogle Scholar
  128. Peter M, Courty P, Kohler A, Delaruelle C, Martin D, Tagu D, Frey-Klett P, Duplessis S, Chalot M, Podila G, Martin F (2003) Analysis of expressed sequence tags from the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus. New Phytol 159:117–129Google Scholar
  129. Pieterse MJC, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:309–316Google Scholar
  130. Prigent-Combaret C, Blaha D, Pothier JF, Vial L, Poirier M-A, Wisniewski-Dyé F, Moenne-Loccoz Y (2008) Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclooropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria. FEMS Microbiol Ecol 65:202–219PubMedGoogle Scholar
  131. Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Hartmann A (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferonelabelled fluorogenic substrates in a microplate system. J Microbiol Methods 58:233–241PubMedGoogle Scholar
  132. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537–547PubMedGoogle Scholar
  133. Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler H-P (2006) Auxofuran, a novel metabolite stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. Appl Environ Microbiol 72:3550–3557PubMedPubMedCentralGoogle Scholar
  134. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837PubMedGoogle Scholar
  135. Rothballer M, Schmid M, Hartmann A (2009) Diazotrophic bacterial endophytes in Gramineae and other plants. In: Pawlowski K (ed) Prokaryotic symbionts in plants, vol 8, Microbiol monographs. Springer, Heidelberg, pp 273–302Google Scholar
  136. Rovira AD (1991) Rhizosphere research – 85 years of progress and frustration. In: Kleister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer, Amsterdam, pp 3–13Google Scholar
  137. Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026PubMedPubMedCentralGoogle Scholar
  138. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Sci Acad USA 100:4927–4932Google Scholar
  139. Samac DA, Kinkel LL (2001) Suppression of the root-lesion nematode (Pratylenchus penetrans) in alfalfa (Medicago sativa) by Streptomyces spp. Plant Soil 235:35–44Google Scholar
  140. Saravesi K, Markkola A, Rautio P, Roitto M, Tuomi J (2008) Defoliation causes parallel temporal responses in a host tree and its fungal symbionts. Oecologia 156:117–123PubMedGoogle Scholar
  141. Sardi P, Saracchi M, Quaroni S, Petrolini B, Borgonovi GE, Merli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl Environ Microbiol 58:2691–93PubMedPubMedCentralGoogle Scholar
  142. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599PubMedGoogle Scholar
  143. Schertzer JW, Boulette ML, Whiteley M (2009) More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol 17:189–195PubMedGoogle Scholar
  144. Schottel JL, Shimizu K, Kinkel LL (2001) Relationships of in vitro pathogen inhibition and soil colonization to potato scab biocontrol by antagonistic Streptomyces spp. Biol Control 20:102–112Google Scholar
  145. Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216PubMedGoogle Scholar
  146. Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acylhomoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918PubMedGoogle Scholar
  147. Seegmüller S, Schulte M, Herschbach C, Rennenberg H (1996) Interactive effects of mycorrhization and elevated atmospheric CO2 on sulphur nutrition of young pedunculate oak (Quercus robur l.) trees. Plant Cell Environ 19:418–426Google Scholar
  148. Selle A, Willmann M, Grunze N, Geßler A, Weiß M, Nehls U (2005) The high-affinity poplar ammonium importer PttAmt1.2 and its role in ectomycorrhizal symbiosis. New Phytol 168:697–706PubMedGoogle Scholar
  149. Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiss M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878PubMedGoogle Scholar
  150. Sharma M, Schmid M, Rothballer M, Hause G, Zuccaro A, Imani J, Schäfer P, Hartmann A, Kogel K-H (2008) Detection and identification of mycorrhiza helper bacteria intimately associated with representatives of the order Sebacinales. Cell Microbiol 10:2235–2246PubMedGoogle Scholar
  151. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Roskot N, Heuer H, Berg B (2001) Bulk and rhizosphere bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751PubMedPubMedCentralGoogle Scholar
  152. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Oxford, UKGoogle Scholar
  153. Soanes DM, Alam I, Cornell M, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Oliver SG, Talbot NJ (2008) Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One 3(6):e2300. doi: 10.1371/journal.pone.0002300 PubMedPubMedCentralGoogle Scholar
  154. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506PubMedGoogle Scholar
  155. Sugarawa M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxin modulates plant microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388Google Scholar
  156. Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963Google Scholar
  157. Tarkka M, Nehls U, Hampp R (2005) Physiology of ectomycorrhiza (ECM). In: Lüttge U (ed) Progress in botany. Springer, Berlin, pp 247–276Google Scholar
  158. Tarkka MT, Hampp R (2008) Secondary metabolites of soil streptomycetes in biotic interactions. In: Karlovsky P (ed) Secondary metabolites in soil ecology, vol 14, Soil biology series. Springer, Berlin, pp 107–28Google Scholar
  159. Tatry MV, Kassis EE, Lambilliotte R, Corratgé C, van Aarle I, Amenc LK, Alary R, Zimmermann S, Sentenac H, Plassard C (2008) Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. Plant J 57:1092–1102PubMedGoogle Scholar
  160. van Aarle I, Viennois G, Amenc LK, Tatry MV, Luu D, Plassard C (2007) Fluorescent in situ rt-PCR to visualise the expression of a phosphate transporter gene from an ectomycorrhizal fungus. Mycorrhiza 17:487–494PubMedGoogle Scholar
  161. Van de Kamp M, Schuurs TA, Vos A, Van der Lende TR, Konings WN, Driessen AJM (2000) Sulfur regulation of the sulfate transporter genes Suta and Sutb in Penicillium chrysogenum. Appl Env Microbiol 66:4536–4538Google Scholar
  162. Vance C, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447Google Scholar
  163. Verma SA, Varma A, Rexer KH, Hassel A, Kost G, Sabhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et spec. nov., a new root-colonizing fungus. Mycologia 90:898–905Google Scholar
  164. von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E, Fekete A, Hartmann A, Schmitt-Kopplin P, Durner J (2008) The response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–85Google Scholar
  165. von Rad U, Mueller MJ, Durner J (2005) Evaluation of natural and synthetic stimulants of plant immunity by microarray technology. New Phytol 165:191–202Google Scholar
  166. Weissman KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3:925–936PubMedGoogle Scholar
  167. Weller DM (1988) Biological control of soilborne pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407Google Scholar
  168. Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348PubMedGoogle Scholar
  169. Westerman S, Stulen I, Suter M, Brunold C, De Kok LJ (2001) Atmospheric H2S as sulphur source for Brassica oleracea: consequences for the activity of the enzymes of the assimilatory sulphate reduction pathway. Plant Physiol Biochem 39:425–432Google Scholar
  170. Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedGoogle Scholar
  171. Wiemken V (2007) Trehalose synthesis in ectomycorrhizas – a driving force of carbon gain for fungi? New Phytol 174:228–230PubMedGoogle Scholar
  172. Wiener P (2000) Antibiotic production in a spatially structured environment. Ecol Lett 3:122–133Google Scholar
  173. Willmann A, Weiss M, Nehls U (2007) Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene Am Amt2 in Amanita muscaria. Curr Genet 51:71–78PubMedGoogle Scholar
  174. Woo JH, Kitamura E, Myuoga H, Yuto K (2002) An antifungal protein from the marine bacterium Streptomyces sp. strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp. Appl Environ Microbiol 68:2666–2675PubMedPubMedCentralGoogle Scholar
  175. Wright DP, Johansson T, Le Quere A, Soderstrom B, Tunlid A (2005) Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula) seedlings in soil microcosms. New Phytol 167:579–596PubMedGoogle Scholar
  176. Xiao K, Samac DA, Kinkel LL (2002) Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol Control 23:285–95Google Scholar
  177. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Physiological Ecology of Plants, IMITUniversity of TübingenTübingenGermany
  2. 2.Department Microbe-Plant Interactions, German Research Center for Environmental HealthHelmholtz Zentrum MünchenNeuherbergGermany
  3. 3.BotanyUniversity of BremenBremenGermany

Personalised recommendations