Principles of Growth Partitioning Between Trees in Forest Stands Under Stress

  • H. PretzschEmail author
  • J. Dieler
  • T. Rötzer
Part of the Ecological Studies book series (ECOLSTUD, volume 220)


The focus is on the interindividual growth partitioning in forest stands under stress. We use (1) individual tree records of size and growth from about 100 long-term experimental plots under survey since 1871 in forest stands along an ecological gradient through South Germany, (2) annual measurements of the size–growth relationship, including the extremely dry years of 1976 and 2003, from a mixing experiment of spruce and beech, and (3) annual growth rates of spruces and beeches with and without double ambient ozone fumigation between 2000 and 2007. Low stress increases steepness and size-asymmetry of the size–growth relationship, i.e., it favors the superiority of tall trees at the smaller trees’ expense. High stress, no matter whether induced by competition, drought, or ozone, distinctly reduces the superior growth rate of tall trees. The causes for this behavior and the consequences for modeling stand dynamics and silvicultural treatment are discussed.


European Beech Tall Tree Size Relationship Ecological Gradient Poor Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Assmann E (1970) The principles of forest yield study. Pergamon, Oxford, 506 pGoogle Scholar
  2. Avery TE, Burkhart HE (1983) Forest measurements, 3rd edn. McGraw-Hill, New York, 331 pGoogle Scholar
  3. Biging GS, Dobbertin M (1995) Evaluation of competition indices in individual tree growth models. Forest Sci 41:360–377Google Scholar
  4. Bugmann H, Grote R, Lasch P, Lindner M, Suckow F (1997) A new forest gap model to study the effects of environmental change on forest structure and functioning. In: Mohren GMJ, Kramer K, Sabaté S (eds) Impacts of global change on tree physiology and forest ecosystems, Forestry sciences. Kluwer, Wageningen, pp 255–261CrossRefGoogle Scholar
  5. Cannell MGR, Grace J (1993) Competition for light: detection, measurement, and quantification. Can J Forest Res 23:1969–1979CrossRefGoogle Scholar
  6. Coggins SB, Coops NC, Wulder MA (2010) Estimates of bark beetle infestation expansion factors with adaptive cluster sampling. Int J Pest Manage 57(1):11–21CrossRefGoogle Scholar
  7. Condit R, Hubbell St P, Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of severe drought. Ecol Monogr 65:419–439CrossRefGoogle Scholar
  8. Elling W (1993) Immissionen im Ursachenkomplex von Tannenschädigung und Tannensterben. AFJZ 48(2):87–95Google Scholar
  9. Hara T (1993) Mode of competition and size-structure dynamics in plant communities. Plant Species Biol 8:75–84CrossRefGoogle Scholar
  10. Hasenauer H, Kindermann G, Steinmetz P (2006) The tree growth model MOSES 3.0. In: Hasenauer H (ed) Sustainable forest management. Growth models for Europe. Springer, Heidelberg, pp 64–70CrossRefGoogle Scholar
  11. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or to defend. Q Rev Biol 67:283–335CrossRefGoogle Scholar
  12. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate change experiments: events, not trends. Front Ecol Environ 5(7):365–374CrossRefGoogle Scholar
  13. Landsberg JJ (1986) Physiological ecology of forest production. Academic, London, 198 pGoogle Scholar
  14. Mailly D, Turbis S, Pothier D (2003) Predicting basal area increment in a spatially explicit, individual tree model: a test of competition measures with black spruce. Can J Forest Res 33:435–443CrossRefGoogle Scholar
  15. Mäkelä A, Hari P (1986) Stand growth model based on carbon uptake and allocation in individual trees. Ecol Model 33:205–229CrossRefGoogle Scholar
  16. Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404CrossRefGoogle Scholar
  17. Matyssek R, Agerer R, Ernst D, Munch JC, Oßwald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580PubMedCrossRefGoogle Scholar
  18. Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Löw M, Nunn AJ, Werner H, Wipfler P, Oßwald W, Nikolova P, Hanke DE, Kraigher H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenröther M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Häberle KH (2010) Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – resume from the free-air fumigation study at Kranzberg Forest. Environ Pollut 158(8):2527–2532PubMedCrossRefGoogle Scholar
  19. Matyssek R et al (2012) The balance between resource sequestration and retention: a challenge in plant science. In: Matyssek R et al (eds) Growth and defence in plants. Sprimger, HeidelbergCrossRefGoogle Scholar
  20. Müller I, Schmid B, Weiner J (2000) The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect Plant Ecol Evol Syst 3(2):115–127CrossRefGoogle Scholar
  21. Nagel J (1999) Konzeptionelle Überlegungen zum schrittweisen Aufbau eines waldwachstumskundlichen Simulationssystems für Nordwestdeutschland. Schr Forstl Fak Univ Göttingen u Niedersächs Forstl Versuchsanst, vol 128. JD Sauerländer’s Verlag, Frankfurt am Main, 122 pGoogle Scholar
  22. Newnham R (1964) The development of a stand model for Douglas-fir. PhD thesis, University of British Columbia, Vancouver, 201 pGoogle Scholar
  23. Niklas KJ (1994) Plant allometry. University of Chicago Press, Chicago, ILGoogle Scholar
  24. Oliver CD, Larson B (1996) Forest stand dynamics. Wiley, New York, 520 pGoogle Scholar
  25. Peltola HK (2006) Mechanical stability of trees under static loads. Am J Bot 93:1501–1511PubMedCrossRefGoogle Scholar
  26. Pretzsch H (1999) Waldwachstum im Wandel, Konsequenzen für Forstwissenschaft und Forstwirtschaft. Forstw Cbl 118:228–250CrossRefGoogle Scholar
  27. Pretzsch H (2009) Forest dynamics, growth and yield. From measurement to model. Springer, Heidelberg, 664 pGoogle Scholar
  28. Pretzsch H (2010) Zur Verteilung des Zuwachses zwischen den Bäumen eines Bestandes und Abhängigkeit des Verteilungsschlüssels von den Standortbedingungen. AFJZ 181(1/2):4–13Google Scholar
  29. Pretzsch H, Biber P (2010) Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can J Forest Res 40:370–384CrossRefGoogle Scholar
  30. Pretzsch H, Dieler J (2011) The dependency of the size-growth relationship of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in forest stands on long-term site conditions, drought events, and ozone stress. Trees 25:355–369CrossRefGoogle Scholar
  31. Pretzsch H, Kahn M, Grote R (1998) Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches “Wachstum oder Parasitenabwehr?” im Kranzberger Forst. Forstw Cbl 117:241–257CrossRefGoogle Scholar
  32. Pretzsch H, Grote R, Reineking B, Rötzer T, Seifert S (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087PubMedCrossRefPubMedCentralGoogle Scholar
  33. Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158:1061–1070PubMedCrossRefGoogle Scholar
  34. Prodan M (1965) Holzmeßlehre. JD Sauerländer’s Verlag, Frankfurt am Main, 644 pGoogle Scholar
  35. Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46:627–638Google Scholar
  36. Röhle H (1987) Entwicklung von Vitalität, Zuwachs und Biomassenstruktur der Fichte in verschiedenen bayerischen Untersuchungsgebieten unter dem Einfluß der neuartigen Walderkrankungen, vol 83, Forstl Forschungsber München. Frank, München, 122 pGoogle Scholar
  37. Rötzer T, Seifert T, Pretzsch H (2009) Modeling above and below ground carbon dynamics in a mixed beech and spruce stand influenced by climate. Eur J Forest Res 128:171–182CrossRefGoogle Scholar
  38. Rötzer T et al (2012) Effects of stress and defence allocation on tree growth: simulation results at the individual and stand level. In: Matyssek R et al (eds) Growth and defence in plants. Sprimger, HeidelbergGoogle Scholar
  39. Schütz JPh (1989) Der Plenterbetrieb. Fachbereich Waldbau, Zürich, 54 pGoogle Scholar
  40. Schweingruber FH, Albrecht H, Beck M, Hessel J, Joos K, Keller D, Kontic R, Lange K, Niederer M, Nippel C, Spang S, Spinnler A, Steiner B, Winkler-Seifert A (1986) Abrupte Zuwachsschwankungen in Jahrringabfolgen als ökologische Indikatoren. Ber Eidg Anst forstl Versuchswesen, Dendrochronologia 4:125–182Google Scholar
  41. Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455CrossRefGoogle Scholar
  42. Skov KR, Kolb TE, Wallin KF (2004) Tree size and drought affect ponderosa pine physiological response to thinning and burning treatments. Forest Sci 50(1):81–91Google Scholar
  43. Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) (1996) Growth trends in European forests. European Forest Institute Research Report No 5, Springer, Heidelberg, 372 pGoogle Scholar
  44. Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55PubMedCrossRefGoogle Scholar
  45. Thomas SC, Weiner J (1989) Growth, death and size distribution change in an Impatiens Pallida population. J Ecol 77:524–536CrossRefGoogle Scholar
  46. Utschig H (1989) Waldwachstumskundliche Untersuchungen im Zusammenhang mit Waldschäden. Auswertung der Zuwachstrendanalyseflächen des Lehrstuhles für Waldwachstumskunde für die Fichte (Picea abies (L.) Karst.) in Bayern, vol 97, Forstl Forschungsber München. Frank, München, 198 pGoogle Scholar
  47. Valinger E, Lundquist L, Bondesson L (1993) Assessing the risk of snow and wind damage from tree physical characteristics. Forestry 66(3):249–260CrossRefGoogle Scholar
  48. van Kuijk M, Anten NPR, Oomen RJ, van Bentum DW, Werger MJA (2008) The limited importance of size-asymmetric light competition and growth of pioneer species in early secondary forest succession in Vietnam. Oecologia 157:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  49. Weiner J (1990) Asymmetric competition in plant populations. Trends Ecol Evol 5:360–364PubMedCrossRefGoogle Scholar
  50. Weiner J, Thomas SC (1986) Size variability and competition in plant monocultures. Oikos 47:211–222CrossRefGoogle Scholar
  51. Weiner J, Thomas SC (1992) Competition and allometry in three species of annual plants. Ecology 73(2):648–656CrossRefGoogle Scholar
  52. Weiner J, Stoll P, Muller-Landau H, Jasentuliyana A (2001) The effects of density, spatial pattern, and competitive symmetry on size variation in simulated plant populations. Am Nat 158(4):438–450PubMedCrossRefGoogle Scholar
  53. Werner H, Fabian P (2002) Free-air fumigation of mature trees – a novel system for controlled ozone enrichment in grown-up beech and spruce canopies. Environ Sci Pollut Res 9:12–117CrossRefGoogle Scholar
  54. Wichmann L (2001) Annual variations in competition symmetry in even-aged sitka spruce. Ann Bot 88:145–151CrossRefGoogle Scholar
  55. Wichmann L (2002) Competition symmetry. In: Modelling the effects of competition between individual trees in forest stands. PhD thesis, University of Forestry, Copenhagen, pp 67–77Google Scholar
  56. Wipfler P, Seifert Th, Biber P, Pretzsch H (2009) Intra-annual growth response of adult Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) to an experimentally enhanced, free-air ozone regime. Eur J Forest Res 128:135–144CrossRefGoogle Scholar
  57. Zeide B (1993) Analyses of growth equations. Forest Sci 39(3):594–616Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Chair of Forest Growth and Yield ScienceTechnische Universität MünchenFreisingGermany

Personalised recommendations