Skip to main content

Principles of Growth Partitioning Between Trees in Forest Stands Under Stress

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 220))

Abstract

The focus is on the interindividual growth partitioning in forest stands under stress. We use (1) individual tree records of size and growth from about 100 long-term experimental plots under survey since 1871 in forest stands along an ecological gradient through South Germany, (2) annual measurements of the size–growth relationship, including the extremely dry years of 1976 and 2003, from a mixing experiment of spruce and beech, and (3) annual growth rates of spruces and beeches with and without double ambient ozone fumigation between 2000 and 2007. Low stress increases steepness and size-asymmetry of the size–growth relationship, i.e., it favors the superiority of tall trees at the smaller trees’ expense. High stress, no matter whether induced by competition, drought, or ozone, distinctly reduces the superior growth rate of tall trees. The causes for this behavior and the consequences for modeling stand dynamics and silvicultural treatment are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Assmann E (1970) The principles of forest yield study. Pergamon, Oxford, 506 p

    Google Scholar 

  • Avery TE, Burkhart HE (1983) Forest measurements, 3rd edn. McGraw-Hill, New York, 331 p

    Google Scholar 

  • Biging GS, Dobbertin M (1995) Evaluation of competition indices in individual tree growth models. Forest Sci 41:360–377

    Google Scholar 

  • Bugmann H, Grote R, Lasch P, Lindner M, Suckow F (1997) A new forest gap model to study the effects of environmental change on forest structure and functioning. In: Mohren GMJ, Kramer K, Sabaté S (eds) Impacts of global change on tree physiology and forest ecosystems, Forestry sciences. Kluwer, Wageningen, pp 255–261

    Chapter  Google Scholar 

  • Cannell MGR, Grace J (1993) Competition for light: detection, measurement, and quantification. Can J Forest Res 23:1969–1979

    Article  Google Scholar 

  • Coggins SB, Coops NC, Wulder MA (2010) Estimates of bark beetle infestation expansion factors with adaptive cluster sampling. Int J Pest Manage 57(1):11–21

    Article  Google Scholar 

  • Condit R, Hubbell St P, Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of severe drought. Ecol Monogr 65:419–439

    Article  Google Scholar 

  • Elling W (1993) Immissionen im Ursachenkomplex von Tannenschädigung und Tannensterben. AFJZ 48(2):87–95

    Google Scholar 

  • Hara T (1993) Mode of competition and size-structure dynamics in plant communities. Plant Species Biol 8:75–84

    Article  Google Scholar 

  • Hasenauer H, Kindermann G, Steinmetz P (2006) The tree growth model MOSES 3.0. In: Hasenauer H (ed) Sustainable forest management. Growth models for Europe. Springer, Heidelberg, pp 64–70

    Chapter  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or to defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate change experiments: events, not trends. Front Ecol Environ 5(7):365–374

    Article  Google Scholar 

  • Landsberg JJ (1986) Physiological ecology of forest production. Academic, London, 198 p

    Google Scholar 

  • Mailly D, Turbis S, Pothier D (2003) Predicting basal area increment in a spatially explicit, individual tree model: a test of competition measures with black spruce. Can J Forest Res 33:435–443

    Article  Google Scholar 

  • Mäkelä A, Hari P (1986) Stand growth model based on carbon uptake and allocation in individual trees. Ecol Model 33:205–229

    Article  Google Scholar 

  • Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404

    Article  CAS  Google Scholar 

  • Matyssek R, Agerer R, Ernst D, Munch JC, Oßwald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Löw M, Nunn AJ, Werner H, Wipfler P, Oßwald W, Nikolova P, Hanke DE, Kraigher H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenröther M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Häberle KH (2010) Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – resume from the free-air fumigation study at Kranzberg Forest. Environ Pollut 158(8):2527–2532

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R et al (2012) The balance between resource sequestration and retention: a challenge in plant science. In: Matyssek R et al (eds) Growth and defence in plants. Sprimger, Heidelberg

    Chapter  Google Scholar 

  • Müller I, Schmid B, Weiner J (2000) The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect Plant Ecol Evol Syst 3(2):115–127

    Article  Google Scholar 

  • Nagel J (1999) Konzeptionelle Überlegungen zum schrittweisen Aufbau eines waldwachstumskundlichen Simulationssystems für Nordwestdeutschland. Schr Forstl Fak Univ Göttingen u Niedersächs Forstl Versuchsanst, vol 128. JD Sauerländer’s Verlag, Frankfurt am Main, 122 p

    Google Scholar 

  • Newnham R (1964) The development of a stand model for Douglas-fir. PhD thesis, University of British Columbia, Vancouver, 201 p

    Google Scholar 

  • Niklas KJ (1994) Plant allometry. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Oliver CD, Larson B (1996) Forest stand dynamics. Wiley, New York, 520 p

    Google Scholar 

  • Peltola HK (2006) Mechanical stability of trees under static loads. Am J Bot 93:1501–1511

    Article  PubMed  Google Scholar 

  • Pretzsch H (1999) Waldwachstum im Wandel, Konsequenzen für Forstwissenschaft und Forstwirtschaft. Forstw Cbl 118:228–250

    Article  Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield. From measurement to model. Springer, Heidelberg, 664 p

    Google Scholar 

  • Pretzsch H (2010) Zur Verteilung des Zuwachses zwischen den Bäumen eines Bestandes und Abhängigkeit des Verteilungsschlüssels von den Standortbedingungen. AFJZ 181(1/2):4–13

    Google Scholar 

  • Pretzsch H, Biber P (2010) Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can J Forest Res 40:370–384

    Article  Google Scholar 

  • Pretzsch H, Dieler J (2011) The dependency of the size-growth relationship of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in forest stands on long-term site conditions, drought events, and ozone stress. Trees 25:355–369

    Article  Google Scholar 

  • Pretzsch H, Kahn M, Grote R (1998) Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches “Wachstum oder Parasitenabwehr?” im Kranzberger Forst. Forstw Cbl 117:241–257

    Article  Google Scholar 

  • Pretzsch H, Grote R, Reineking B, Rötzer T, Seifert S (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158:1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Prodan M (1965) Holzmeßlehre. JD Sauerländer’s Verlag, Frankfurt am Main, 644 p

    Google Scholar 

  • Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46:627–638

    Google Scholar 

  • Röhle H (1987) Entwicklung von Vitalität, Zuwachs und Biomassenstruktur der Fichte in verschiedenen bayerischen Untersuchungsgebieten unter dem Einfluß der neuartigen Walderkrankungen, vol 83, Forstl Forschungsber München. Frank, München, 122 p

    Google Scholar 

  • Rötzer T, Seifert T, Pretzsch H (2009) Modeling above and below ground carbon dynamics in a mixed beech and spruce stand influenced by climate. Eur J Forest Res 128:171–182

    Article  Google Scholar 

  • Rötzer T et al (2012) Effects of stress and defence allocation on tree growth: simulation results at the individual and stand level. In: Matyssek R et al (eds) Growth and defence in plants. Sprimger, Heidelberg

    Google Scholar 

  • Schütz JPh (1989) Der Plenterbetrieb. Fachbereich Waldbau, Zürich, 54 p

    Google Scholar 

  • Schweingruber FH, Albrecht H, Beck M, Hessel J, Joos K, Keller D, Kontic R, Lange K, Niederer M, Nippel C, Spang S, Spinnler A, Steiner B, Winkler-Seifert A (1986) Abrupte Zuwachsschwankungen in Jahrringabfolgen als ökologische Indikatoren. Ber Eidg Anst forstl Versuchswesen, Dendrochronologia 4:125–182

    Google Scholar 

  • Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455

    Article  Google Scholar 

  • Skov KR, Kolb TE, Wallin KF (2004) Tree size and drought affect ponderosa pine physiological response to thinning and burning treatments. Forest Sci 50(1):81–91

    Google Scholar 

  • Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) (1996) Growth trends in European forests. European Forest Institute Research Report No 5, Springer, Heidelberg, 372 p

    Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55

    Article  PubMed  Google Scholar 

  • Thomas SC, Weiner J (1989) Growth, death and size distribution change in an Impatiens Pallida population. J Ecol 77:524–536

    Article  Google Scholar 

  • Utschig H (1989) Waldwachstumskundliche Untersuchungen im Zusammenhang mit Waldschäden. Auswertung der Zuwachstrendanalyseflächen des Lehrstuhles für Waldwachstumskunde für die Fichte (Picea abies (L.) Karst.) in Bayern, vol 97, Forstl Forschungsber München. Frank, München, 198 p

    Google Scholar 

  • Valinger E, Lundquist L, Bondesson L (1993) Assessing the risk of snow and wind damage from tree physical characteristics. Forestry 66(3):249–260

    Article  Google Scholar 

  • van Kuijk M, Anten NPR, Oomen RJ, van Bentum DW, Werger MJA (2008) The limited importance of size-asymmetric light competition and growth of pioneer species in early secondary forest succession in Vietnam. Oecologia 157:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiner J (1990) Asymmetric competition in plant populations. Trends Ecol Evol 5:360–364

    Article  PubMed  CAS  Google Scholar 

  • Weiner J, Thomas SC (1986) Size variability and competition in plant monocultures. Oikos 47:211–222

    Article  Google Scholar 

  • Weiner J, Thomas SC (1992) Competition and allometry in three species of annual plants. Ecology 73(2):648–656

    Article  Google Scholar 

  • Weiner J, Stoll P, Muller-Landau H, Jasentuliyana A (2001) The effects of density, spatial pattern, and competitive symmetry on size variation in simulated plant populations. Am Nat 158(4):438–450

    Article  PubMed  CAS  Google Scholar 

  • Werner H, Fabian P (2002) Free-air fumigation of mature trees – a novel system for controlled ozone enrichment in grown-up beech and spruce canopies. Environ Sci Pollut Res 9:12–117

    Article  Google Scholar 

  • Wichmann L (2001) Annual variations in competition symmetry in even-aged sitka spruce. Ann Bot 88:145–151

    Article  Google Scholar 

  • Wichmann L (2002) Competition symmetry. In: Modelling the effects of competition between individual trees in forest stands. PhD thesis, University of Forestry, Copenhagen, pp 67–77

    Google Scholar 

  • Wipfler P, Seifert Th, Biber P, Pretzsch H (2009) Intra-annual growth response of adult Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) to an experimentally enhanced, free-air ozone regime. Eur J Forest Res 128:135–144

    Article  Google Scholar 

  • Zeide B (1993) Analyses of growth equations. Forest Sci 39(3):594–616

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Pretzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pretzsch, H., Dieler, J., Rötzer, T. (2012). Principles of Growth Partitioning Between Trees in Forest Stands Under Stress. In: Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, J., Pretzsch, H. (eds) Growth and Defence in Plants. Ecological Studies, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30645-7_14

Download citation

Publish with us

Policies and ethics