Case Study “Kranzberger Forst”: Growth and Defence in European Beech (Fagus sylvatica L.) and Norway Spruce (Picea abies (L.) Karst.)

  • K.-H. HäberleEmail author
  • R. Weigt
  • P. S. Nikolova
  • I. M. Reiter
  • J. Cermak
  • G. Wieser
  • H. Blaschke
  • T. Rötzer
  • H. Pretzsch
  • R. Matyssek
Part of the Ecological Studies book series (ECOLSTUD, volume 220)


Choosing the comparative analysis of biomass partitioning of the two competing tree species, European beech and Norway spruce, with their contrasting crown architecture and foliage habit as a starting point, the outcome from an 8-year free-air canopy exposure experiment to an enhanced ozone (O3) regime is comprehended. The experiment had been employed for interfering with resource allocation according to the growth–differentiation-balance theory.

Clarification of growth performance of both species is considered as a prerequisite for the analysis of tree response to abiotic and biotic stress. Therefore, after introducing into the research site “Kranzberger Forst”, both the tree species are compared for their competitiveness in view of space-related resource use. This kind of examination allows cost–benefit analyses of competition-associated resource turnover and, in addition, standardises comparisons between the contrasting foliage habits. Subsequently a conceptual approach is presented on how defence costs may be estimated for each species. O3 responses are discussed in view of stress signalling mechanisms and potential discrepancies between ontogenetic stages. Conclusions are drawn on the different strategies of beech and spruce in coping with conflicting resource demands between growth and defence.

The better adaptation of beech to react on disturbances fails in the case of ozone stress where beech was found to be more susceptible than spruce by allocating carbon to the roots leading to allometric changes and a loss in wood production aboveground.


Fine Root Gross Primary Production Specific Leaf Area Coarse Root Ozone Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the technical assistance by Thomas Feuerbach, Peter Kuba, Josef Heckmair and Ilse Süß. We thank Prof. Dr. J. Fromm, Prof. Dr. C. Körner and Prof. Dr. U. Lüttge for helpful suggestions. The work had been funded within the interdisciplinary research programme “Growth and Parasite Defence” (SFB 607) by “Deutsche Forschungsgemeinschaft” and within the project CASIROZ (FP 5) by the European Commission (EVK2-2002-00165). We thank “Bayerische Staatsforsten” for providing the research site.


  1. Achard P, Vriezen WH, Van Der Straeten D, Harberd NP (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816–2825PubMedPubMedCentralGoogle Scholar
  2. Andersen CP (2003) Source–sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228Google Scholar
  3. Bahnweg G, Heller W, Stich S, Knappe C, Betz G, Heerdt C, Kehr RD, Ernst D, Langebartels C, Nunn AJ, Rothenburger J, Schubert R, Muller-Starck G, Werner H, Matyssek R, Sandermann H Jr (2005) Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions. Plant Biol 7:659–669PubMedGoogle Scholar
  4. Bailey-Serres J, Voesenek LACJ (2010) Life in the balance: a signaling network controlling survival of flooding. Curr Opin Plant Biol 13:489–494PubMedGoogle Scholar
  5. Blumenröther MC, Löw M, Matyssek R, Oβwald W (2007) Flux-based response of sucrose and starch in leaves of adult beech trees (Fagus sylvatica L.) under chronic free-air O3 fumigation. Plant Biol 9:207–214PubMedGoogle Scholar
  6. Butin HH (1995) Tree diseases and disorders: causes, biology, and control in forest and amenity trees. Oxford University Press, OxfordGoogle Scholar
  7. Čermák J, Nadezhdina N, Meiresonne L, Ceulemans R (2008) Scots pine root distribution derived from radial sap flow patterns in stems of large leaning trees. Plant Soil 305:61–75Google Scholar
  8. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein F, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533PubMedGoogle Scholar
  9. Clancy KM, Wagner MR, Reich PB (1995) Ecophysiology and insect herbivory. In: Smith WK, Hinckley TM (eds) Ecophysiology of coniferous forests. Academic Press, San Diego, pp 125–180Google Scholar
  10. Cojocariu C, Escher P, Häberle KH, Matyssek R, Rennenberg H, Kreuzwieser J (2005) The effect of ozone on the emission of carbonyls from leaves of adult Fagus sylvatica. Plant Cell Environ 28:603–611Google Scholar
  11. Fassnacht KS, Gower ST, Norman JM, McMurtie RE (1994) A comparison of optical and direct methods for estimating foliage surface area in forests. Agric Forest Meteorol 71:183–207Google Scholar
  12. Ferdinand JA, Fredericksen TS, Kouterick KB, Skelly JM (2000) Leaf morphology and ozone sensitivity of two open pollinated genotypes of black cherry (Prunus serotina) trees. Environ Pollut 108:297–302PubMedGoogle Scholar
  13. Fine PVA, Miller ZJ, Mesones I, Irazuzta S, A|ppel HM, Stevens MHH, Sääksjärvi I, Schultz JC, Coley PD (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87(Suppl 7):150–162Google Scholar
  14. Fredericksen TS, Joyce BJ, Skelly JM, Steiner KC, Kolb TE, Kouterick KB, Savage JE, Snyder KR (1995) Physiology, morphology, and ozone uptake of leaves of black cherry seedlings, saplings, and canopy trees. Environ Pollut 89:273–283PubMedGoogle Scholar
  15. Fredericksen TS, Skelly JM, Steiner KC, Kolb TE, Kouterick KB (1996) Size-mediated foliar response to ozone in black cherry trees. Environ Pollut 91:53–63PubMedGoogle Scholar
  16. Gayler S, Leser C, Priesack E, Treutter D (2004) Modelling the effect of environmental factors on the “trade-off” between growth and defensive compounds in young apple trees. Trees 18:363–371Google Scholar
  17. Gazzarrini S, McCourt P (2003) Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us. Ann Bot (Lond) 91:605–612Google Scholar
  18. Genet A, Wernsdörfer H, Jonard M, Pretzsch H, Rauch M, Ponette Q, Nys C, Legout A, Ranger J, Vallet P, Saint-André L (2011) Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe. Forest Ecol Manage 261:1188–1202Google Scholar
  19. Grams TEE, Kozovits AR, Reiter IM, Winkler JB, Sommerkorn M, Blaschke H, Häberle K-H, Matyssek R (2002) Quantifying competitiveness in woody plants. Plant Biol 4:153–158Google Scholar
  20. Grams TEE, Werner H, Kuptz D, Ritter W, Fleischmann F, Andersen C, Matyssek R (2011) A free-air system for long-term stable carbon isotope labeling of adult forest trees. Trees 25:187–198Google Scholar
  21. Grebenc T, Kraigher H (2007) Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone concentration. Plant Biol 9:279–287PubMedGoogle Scholar
  22. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194Google Scholar
  23. Grote R, Reiter IM (2004) Competition-dependent modelling of foliage biomass in forest stands. Trees 18:596–607Google Scholar
  24. Grulke NE, Miller PR (1994) Changes in gas exchange characteristics during the life span of giant sequoia – implications for response to current and future concentrations of atmospheric ozone. Tree Physiol 14:659–668PubMedGoogle Scholar
  25. Grulke NE, Retzlaff WA (2001) Changes in physiological attributes of ponderosa pine from seedling to mature tree. Tree Physiol 21:275–286PubMedGoogle Scholar
  26. Haberer K, Grebenc T, Alexou M, Gessler A, Kraigher H, Rennenberg H (2007) Effects of long-term free-air ozone fumigation on δ15N and total N in Fagus sylvatica and associated mycorrhizal fungi. Plant Biol 9:242–252PubMedGoogle Scholar
  27. Haberer K, Herbinger K, Alexou M, Rennenberg H, Tausz M (2008) Effects of drought and canopy ozone exposure on antioxidants in fine roots of mature European beech (Fagus sylvatica). Tree Physiol 28:713–719PubMedGoogle Scholar
  28. Häberle K-H, Nunn AJ, Reiter IM, Werner H, Heller W, Bahnweg G, Gayler S, Lütz C, Matyssek R (2009) Variation of defence-related metabolites in the foliage of adult beech and spruce: a conceptual approach to approximating traded-off carbon. Eur J Forest Res 128:99–108Google Scholar
  29. Herbinger K, Then C, Löw M, Haberer K, Alexous M, Koch N, Remele K, Heerdt C, Grill D, Rennenberg H, Häberle K-H, Matyssek R, Tausz M, Wieser G (2005) Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure. Environ Pollut 137:476–482PubMedGoogle Scholar
  30. Herbinger K, Then C, Haberer K, Alexou M, Löw M, Remele K, Rennenberg H, Matyssek R, Grill D, Wieser G, Tausz M (2007) Gas exchange and antioxidative compounds in young beech trees under free-air ozone exposure and comparisons to adult trees. Plant Biol 9:288–297PubMedGoogle Scholar
  31. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335Google Scholar
  32. Hruska J, Cermak J, Sustek S (1999) Mapping tree root systems with ground-penetrating radar. Tree Physiol 19:125–130PubMedGoogle Scholar
  33. IPCC (2007) Climate change 2007: impacts, adaptations and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) Contribution of the Working Group II for the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  34. Jehnes S, Betz G, Bahnweg G, Haberer K, Sandermann H, Rennenberg H (2007) Tree internal signalling and defence reactions under ozone exposure in sun and shade leaves of European beech (Fagus sylvatica L.) trees. Plant Biol 9:253–264PubMedGoogle Scholar
  35. Karlsson PE, Uddling J, Braun S, Broadmeadow M, Elvira S, Gimeno B, Le Thiec D, Oksanen E, Vandermeiren K, Wilkinson M, Emberson LD (2004) Dose-response relationships for ozone impact on the biomass accumulation of young trees of different European species based on AOT40 and cumulative leaf uptake of ozone. Atmos Environ 38:2283–2295Google Scholar
  36. Karnosky DF, Werner H, Holopainen T, Percy K, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilman W, Cox R, Nelson N, Matyssek R (2007) Free-air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190PubMedGoogle Scholar
  37. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88Google Scholar
  38. Kitao M, Löw M, Heerdt C, Grams TEE, Häberle K-H, Matyssek R (2009) Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ Pollut 157:537–544PubMedGoogle Scholar
  39. Kolb TE, Matyssek R (2001) Limitations and perspectives about scaling ozone impact in trees. Environ Pollut 115:373–393Google Scholar
  40. Kolb TE, Fredericksen TS, Steiner KC, Skelly JM (1997) Issues in scaling tree size and age responses to ozone: a review. Environ Pollut 98:195–208Google Scholar
  41. Koricheva J, Larsson S, Haukioja E, Keinänen M (1998) Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos 83:212–226Google Scholar
  42. Kozovits AR, Matysssek R, Blaschke H, Göttlein A, Grams TEE (2005) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons. Glob Change Biol 11:1387–1401Google Scholar
  43. Langebartels C, Kangasjärvi J (2004) Ethylene and jasmonate as regulators of cell death in disease resistance. In: Sandermann H (ed) Molecular ecotoxicology of plants, vol 170. Springer, Heidelberg, pp 75–109Google Scholar
  44. Lerdau M, Gershenzon J (1997) Allocation theory and chemical defense. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic Press, San Diego, pp 265–277Google Scholar
  45. Löw M, Herbinger K, Nunn AJ, Häberle K-H, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548Google Scholar
  46. Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects host-pathogen interaction and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biol 7:640–649PubMedGoogle Scholar
  47. Luedemann G, Matyssek R, Winkler JB, Grams TEE (2009) Contrasting ozone × pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies). Plant Soil 323:47–60Google Scholar
  48. Lüttge U, Kluge M, Thiel G (2010) Botanik. Wiley-VCH, WeinheimGoogle Scholar
  49. Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective, vol 64, Progress in botany. Springer, Heidelberg, pp 349–404Google Scholar
  50. Matyssek R, Reich PB, Oren R, Winner WE (1995) Response mechanisms of conifers to air pollutants. In: Smith WK, Hinckley TH (eds) Physiological ecology of coniferous forests, Physiological ecology series. Academic, New York, pp 255–308Google Scholar
  51. Matyssek R, Agerer R, Ernst D, Munch JC, Osswald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005a) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580PubMedGoogle Scholar
  52. Matyssek R, Wieser G, Nunn A, Löw M, Then C, Herbinger K, Blumenröther M, Alexou M, Jehnes S, Heerdt C, Koch N, Häberle K-H, Haberer K, Werner H, Tausz M, Fabian P, Rennenberg H, Grill D, Oßwald W (2005b) How sensitive are forest trees to ozone? – new research on an old issue. In: Omasa K, Nouchi I, de Kok LJ (eds) Plant response to air pollution and global change. Springer, Tokyo, pp 21–28Google Scholar
  53. Matyssek R, Bahnweg G, Ceulemans R, Fabian P, Grill D, Hanke DE, Kraigher H, Osswald W, Rennenberg H, Sandermann H, Tausz M, Wieser G (2007a) Synopsis of the CASIROZ case study: carbon sink strength of Fagus sylvatica L. in a changing environment – experimental risk assessment of mitigation by chronic ozone impact. Plant Biol 9:163–180PubMedGoogle Scholar
  54. Matyssek R, Bytnerowic A, Karlsson P-E, Paoletti E, Sanz M, Schaub M, Wieser G (2007b) Promoting the O3 flux concept for forest trees. Environ Pollut 146:587–607PubMedGoogle Scholar
  55. Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582PubMedGoogle Scholar
  56. Matyssek R, Wieser G, Patzner K, Blaschke H, Häberle K-H (2009) Transpiration of forest trees and stands at different altitude: consistencies rather than contrasts. Eur J Forest Res 128:579–596Google Scholar
  57. Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Löw M, Nunn AJ, Werner H, Wipfler P, Oßwald W, Nikolova P, Hanke DE, Kraigher H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenröther M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Häberle K-H (2010) Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) Resume from the free-air fumigation study at Kranzberg Forest. Environ Pollut 158:2527–2532PubMedGoogle Scholar
  58. Matyssek R, Kosovits AR, Schnitzler J-P, Pretzsch H, Dieler J, Wieser G (2012) Forest trees under air pollution as a factor of climate change. In: Tausz M, Grulke N (eds) Trees in a changing environment: ecophysiology, adaptation and future survival, Plant ecophysiology series. Springer, Berlin (in press)Google Scholar
  59. Mehlhorn H, Wellburn AR (1987) Stress ethylene formation determines plant sensitivity to ozone. Nature 327:417–418Google Scholar
  60. Miller JD, Richard N, Arteca RN, Pell EJ (1999) Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol 120(4):1015–1024PubMedPubMedCentralGoogle Scholar
  61. Mutikainen P, Walls M, Ovasaka J, Keinänen M, Julkunen-Tiitto R, Vapaavuori E (2002) Costs of herbivore resistance in clonal saplings of Betula pendula. Oecologia 133:364–371Google Scholar
  62. Nemhauser JL, Fangxin Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475PubMedGoogle Scholar
  63. Nikolova PS (2007) Below-ground competitiveness of adult beech and spruce trees: resource investments versus returns. Doctoral thesis, Weihenstephan Center of Life Sciences, TU MünchenGoogle Scholar
  64. Nikolova PS, Raspe S, Andersen CP, Mainiero R, Helmut Blaschke H, Matyssek R, Häberle K-H (2009) Effects of the extreme drought in 2003 on soil respiration in a mixed forest. Eur J Forest Res 128:87–98Google Scholar
  65. Nikolova PS, Andersen CP, Blaschke H, Matyssek R, Häberle K-H (2010) Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst). Environ Pollut 158:1071–1078PubMedGoogle Scholar
  66. Novák J (1975) Quantitative analysis by gas-chromatography. Marcel Dekker, New YorkGoogle Scholar
  67. Nunn AJ, Reiter IM, Häberle K-H, Werner H, Langebartels C, Sandermann H, Heerdt C, Fabian P, Matyssek R (2002) “Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech. Phyton 42:105–119Google Scholar
  68. Nunn AJ, Anegg S, Betz G, Simons S, Kalisch G, Seidlitz HK, Grams TEE, Häberle KH, Matyssek R, Bahnweg G, Sandermann H, Langebartels C (2005a) Role of ethylene in the regulation of cell death and leaf loss in ozone-exposed European beech. Plant Cell Environ 28:886–897Google Scholar
  69. Nunn AJ, Reiter IM, Häberle K-H, Langebartels C, Bahnweg G, Pretzsch H, Sandermann H, Matyssek R (2005b) Response pattern in adult forest trees to chronic ozone stress: identification of variations and consistencies. Environ Pollut 136:365–369PubMedGoogle Scholar
  70. Nunn AJ, Wieser G, Reiter IM, Häberle K-H, Grote R, Havranek WM, Matyssek R (2006) Testing the unifying theory of ozone sensitivity with mature trees of Fagus sylvatica and Picea abies. Tree Physiol 26:1391–1403PubMedGoogle Scholar
  71. Olbrich M, Gerstner E, Bahnweg G, Häberle K-H, Matyssek R, Welzl G, Ernst D (2010a) Transcriptional signatures in leaves of adult European beech trees (Fagus sylvatica L.) in an experimentally enhanced free air ozone setting. Environ Pollut 158:977–982PubMedGoogle Scholar
  72. Olbrich M, Knappe C, Wenig M, Gerstner E, Häberle K-H, Kitao M, Matyssek R, Stich S, Leuchner M, Werner H, Schlink K, Muller-Starck G, Welzl G, Scherb H, Ernst D, Heller W, Bahnweg G (2010b) Ozone fumigation (twice ambient) reduces leaf infestation following natural and artificial inoculation by the endophytic fungus Apiognomonia errabunda of adult European beech trees. Environ Pollut 158:1043–1050PubMedGoogle Scholar
  73. Pokorny R, Marek MV (2000) Test of accuracy of LAI estimation by LAI-2000 under artificially changed leaf to wood area proportions. Biol Plant 43:537–544Google Scholar
  74. Poorter H, Villar R (1997) The fate of aquired carbon in plants: chemical composition and construction costs. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic Press, San Diego, pp 39–71Google Scholar
  75. Pretzsch H (2010) Re-evaluation of allometry: state-of-the-art and perspective regarding individuals and stands of woody plants, vol 71, Progress in botany. Springer, Heidelberg, pp 339–369Google Scholar
  76. Pretzsch H, Kahn M, Grote R (1998) Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches “Wachstum oder Parasitenabwehr?” im Kranzberger Forst. Forstwiss Cblt 117:241–257Google Scholar
  77. Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158:1061–1070PubMedGoogle Scholar
  78. Rebel K (1922) Wiederaufforstung der 1920er Windwurfflächen auf der schwäbischen-bayrischen Hochebene. Faksimile Ausgabe. Roland, BremenGoogle Scholar
  79. Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91PubMedGoogle Scholar
  80. Reiter IM (2004) Space-related resource investments and gains of adult beech and spruce as quantification of aboveground competitiveness. Doctoral thesis, Weihenstephan Center of Life Sciences, TU MünchenGoogle Scholar
  81. Reiter IM, Häberle K-H, Nunn AJ, Heerdt C, Reitmayer H, Grote R, Matyssek R (2005) Competitive strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain. Oecologia 146:337–349PubMedGoogle Scholar
  82. Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54PubMedPubMedCentralGoogle Scholar
  83. Ritter W, Andersen CP, Matyssek R, Grams TEE (2011) Carbon flux to woody tissues in a beech/spruce forest during summer and in response to chronic elevated O3 exposure. Biogeosci Discuss 8:4131–4161Google Scholar
  84. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann Rev Plant Biol 57:675–709Google Scholar
  85. Ross JJ, Reid JB (1986) Intemode length in Pisum. The involvement of ethylene with the gibberellin-insensitive erectoides phenotype. Physiol Plant 67:673–679Google Scholar
  86. Ross JJ, Reid JB (2010) Evolution of growth-promoting plant hormones. Funct Plant Biol 37:795–805Google Scholar
  87. Ross JJ, Weston DE, Davidson SE, Reid JB (2011) Plant hormone interactions: how complex are they? Physiol Plant 141:299–309PubMedGoogle Scholar
  88. Samuelson LJ, Edwards GS (1993) A comparison of sensitivity to ozone in seedlings and trees of Quercus rubra L. New Phytol 125:373–379Google Scholar
  89. Samuelson LJ, Kelly JM, Mays PA, Edwards GS (1996) Growth and nutrition of Quercus rubra seedlings and mature trees after three seasons of ozone exposure. Environ Pollut 91:317–320PubMedGoogle Scholar
  90. Sandermann H (1996) Ozone and plant health. Ann Rev Phytopathol 34:347–366Google Scholar
  91. Sandermann H, Wellburn AR, Heath RL (1997) Forest decline and ozone: a comparison of controlled chamber and field experiments, vol 127, Ecological studies. Springer, BerlinGoogle Scholar
  92. Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50Google Scholar
  93. Schulze ED, Beck E, Müller-Hohenstein K (2002) Pflanzenökologie. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  94. Sharp RE, LeNoble ME, Else MA, Thorne ET, Gherardi F (2000) Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J Exp Bot 51:1575–1584PubMedGoogle Scholar
  95. Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794PubMedGoogle Scholar
  96. Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55PubMedGoogle Scholar
  97. Stockwell WR, Kirchner F, Kuhn M, Seefeld S (1997) A new mechanism for regional atmospheric chemistry modeling. J Geophys Res 102:25847–25879Google Scholar
  98. Taylor GE Jr, Hanson PJ (1992) Forest trees and tropospheric ozone. Role of canopy deposition and leaf uptake in developing exposure-response relationships. Agric Ecosyst Environ 42:255–273Google Scholar
  99. Tegischer K, Tausz M, Grill D, Wieser G (2002) Tree-age and needle-age dependent variations of antioxidants and photoprotective pigments in spruce needles at the alpine timberline. Tree Physiol 22:591–596PubMedGoogle Scholar
  100. Villar R, Robleto JR, de Jong Y, Poorter H (2006) Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant Cell Environ 29:1629–1643PubMedGoogle Scholar
  101. Weigt R (2010) Effects of elevated ground-level ozone on nitrogen acquisition of mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) trees. Doctoral thesis, Weihenstephan Center of Life Sciences, TU MünchenGoogle Scholar
  102. Wellburn FAM, Lau K-K, Milling MK, Wellburn AR (1996) Drought and air pollution affect nitrogen cycling and free-radical scavenging in Pinus halepensis Mill. J Exp Bot 47:1361–1367Google Scholar
  103. Werner H, Fabian P (2002) Free-air fumigation of mature trees. Environ Sci Pollut Res 9:117–121Google Scholar
  104. Wieser G, Tegischer K, Tausz M, Häberle K-H, Grams TEE, Matyssek R (2002a) Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiol 22:583–590PubMedGoogle Scholar
  105. Wieser G, Hecke K, Tausz M, Häberle K-H, Grams TEE, Matyssek R (2002b) The role of antioxidative defense in determining ozone sensitivity of Norway spruce (Picea abies [L.] Karst.) across tree age: implications for the sun and shade crown. Phyton 42:245–253Google Scholar
  106. Wieser G, Hecke K, Tausz M, Häberle K-H, Grams TEE, Matyssek R (2003) The influence of microclimate and tree age on the defense capacity of European beech (Fagus sylvatica L.) against oxidative stress. Ann Forest Sci 60:131–135Google Scholar
  107. Winwood J, Pate AE, Price AJ, Hanke DE (2007) Effects of long-term, free-air ozone fumigation on the cytokinin content of mature beech trees. Plant Biol 9:265–278PubMedGoogle Scholar
  108. Wipfler P, Seifert T, Heerdt C, Werner H, Pretzsch H (2005) Growth of adult Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) under free-air ozone fumigation. Plant Biol 7:611–618PubMedGoogle Scholar
  109. Wittmann C, Matyssek R, Pfanz H, Humar M (2007) Effects of ozone impact on the gas exchange and chlorophyll fluorescence of juvenile birch stems (Betula pendula Roth.). Environ Pollut 150:258–266PubMedGoogle Scholar
  110. Yamamoto F, Kozlowski TT (1987) Regulation by auxin and ethylene of responses of Acer negundo seedlings to flooding of soil. Environ Exp Bot 27:329–340Google Scholar
  111. Zeleznik P, Hrenko M, Then C, Koch N, Grebenc T, Levanic T, Kraigher H (2007) CASIROZ: root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes. Plant Biol 9:298–308PubMedGoogle Scholar
  112. Zellnig G, Tausz M, Pesec B, Grill D, Müller M (2000) Effects of glutathione on thiol redox systems, chromosomal aberrations, and the ultrastructure of meristematic root cells of Picea abies (L.) Karst. Protoplasma 212:227–235Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • K.-H. Häberle
    • 1
    Email author
  • R. Weigt
    • 1
  • P. S. Nikolova
    • 1
  • I. M. Reiter
    • 2
  • J. Cermak
    • 3
  • G. Wieser
    • 4
  • H. Blaschke
    • 1
  • T. Rötzer
    • 5
  • H. Pretzsch
    • 5
  • R. Matyssek
    • 1
  1. 1.Chair of Ecophysiology of PlantsTechnische Universität MünchenFreisingGermany
  2. 2.CEA/Cadarache, DSV, DEVM, Laboratoire d’Ecophysiologie Moléculaire des PlantesUMR 6191 CNRS-CEA-Université de la MéditerranéeSaint-Paul-lez-Durance, CedexFrance
  3. 3.Institute of Forest BotanyMendel University of Agriculture and ForestryBrnoCzech Republic
  4. 4.Department of Alpine Timberline EcophysiologyFederal Office and Research Centre for ForestsInnsbruckAustria
  5. 5.Chair of Forest Growth and Yield ScienceTechnische Universität MünchenFreisingGermany

Personalised recommendations