Advertisement

Plants and Their Ectomycorrhizosphere: Cost and Benefit of Symbiotic Soil Organisms

  • R. AgererEmail author
  • A. Hartmann
  • K. Pritsch
  • S. Raidl
  • M. Schloter
  • R. Verma
  • R. Weigt
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 220)

Abstract

The ectomycorrhizosphere is a heterogeneous and variable micro-environment, predominantly established by variously formed extramatrical mycelia (EMM) that emanate from the hyphal mantle of ectomycorrhizae that envelopes the short roots. The mycelia differ fungal species-dependent regarding range, density and differentiation. Contingent upon the amount of sugars available for the ectomycorrhizal fungi — controlled, e.g. by elevated above-ground concentrations of ozone or carbon dioxide exposure to host trees — an ectomycorrhizal community can change its total amount of EMM, leading to changes in space occupation, and consequently, to alterations in its capacity to explore and exploit soil resources. We quantify the exploration type specific space occupation under the influence of twice-ambient ozone concentrations and estimate the carbon cost the tree has to pay for. Further, we address enzymatic capacities of ectomycorrhizal communities and focus on bacteria being associated with the mycelium. Finally we discuss the impact of soil micro-niches on ectomycorrhizal communities and mention briefly the ectomycorrhizal competition with each other and with saprotrophic fungi.

Keywords

Fine Root Saprotrophic Fungus Space Occupation Mycorrhizal Hypha Ectomycorrhizal Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agerer R (1985) Zur Ökologie der Mykorrhizapilze, vol 97, Bibliotheca Mycologica. Cramer, VaduzGoogle Scholar
  2. Agerer R (1987–2008) Colour atlas of ectomycorrhizae. 1st–14th delivery. Einhorn, Schwäbisch GmündGoogle Scholar
  3. Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DA, Varma AK (eds) Techniques for the study of mycorrhiza, vol 23, Methods in microbiology. Academic, San Diego, pp 25–73Google Scholar
  4. Agerer R (1993) Mycorrhizae: ectomycorrhizae and ectendomycorrhizae. Prog Bot 54:505–529Google Scholar
  5. Agerer R (1995) Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In: Varma K, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Heidelberg, pp 685–734Google Scholar
  6. Agerer R (1999) Never change a functionally successful principle: the evolution of Boletales s. l. (Hymenomycetes, Basidiomycota) as seen from below-ground features. Sendtnera 6:5–91Google Scholar
  7. Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114Google Scholar
  8. Agerer R (2002) The ectomycorrhiza Piceirhiza internicrassihyphis: a weak competitor of Cortinarius obtusus? Mycol Prog 1:291–299Google Scholar
  9. Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–107Google Scholar
  10. Agerer R (2007) Diversity of ectomycorrhizae as seen from below and above ground: the exploration types. Z Mykol 73:61–88Google Scholar
  11. Agerer R (2011) Asexual reproduction of Hygrophorus olivaceoalbus by intracellular microsclerotia in root cells of Picea abies – a winner of ozone stress? Mycol Prog. 11:425–435 doi: 10.1007/s11557-011-0757-y
  12. Agerer R, Göttlein A (2003) Correlations between projection area of ectomycorrhizae and H2O extractable nutrients in organic soil layers. Mycol Prog 2:45–52Google Scholar
  13. Agerer R, Raidl S (2004) Distance-related semi-quantitative estimation of the extramatrical ectomycorrhizal mycelia of Cortinarius obtusus and Tylospora asterophora. Mycol Prog 3:57–64Google Scholar
  14. Agerer R, Rambold G (2004–2011) DEEMY – an information system for characterization and determination of ectomycorrhizae. München, Germany.http://www.deemy.de [first posted on 2004-06-01; most recent update: 2011-01-10]
  15. Agerer R, Schloter M, Hahn C (2000) Fungal enzymatic activity in fruitbodies. Nova Hedwigia 71:315–336Google Scholar
  16. Agerer R, Grote R, Raidl S (2002) The new method ‘micromapping’, a means to study species-specific associations and exclusions of ectomycorrhizae. Mycol Prog 1:155–166Google Scholar
  17. Aguilera LM, Griffiths RP, Caldwell BA (1993) Nitrogen in ectomcycorrhizal mat and non-mat soils of different-age Douglas-fir forests. Soil Biol Biochem 25:1015–1019Google Scholar
  18. Alberton O, Kuyper TW (2009) Ectomycorrhizal fungi associated with Pinus sylvestris seedlings respond differently to increased carbon and nitrogen availability: implications for ecosystem responses to global change. Glob Change Biol 15:166–175Google Scholar
  19. Alberton O, Kuyper TW, Corissen A (2007) Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2. Plant Soil 296:159–172Google Scholar
  20. Andersen CP (2003) Source-sink balance and carbon allocation belowground in plants exposed to ozone. New Phytol 157:213–228Google Scholar
  21. Aneja MK, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch JC, Schloter M (2006) Microbial colonization of beech and spruce litter - influence of decomposition site and plant litter species on the diversity of microbial community. Microb Ecol 52:127–135PubMedGoogle Scholar
  22. Aneja MK, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch JC, Schloter M (2007) Influence of ozone on litter quality and its subsequent effects on the initial structure of colonizing microbial communities. Microb Ecol 54:151–160PubMedGoogle Scholar
  23. Arao T (1999) In situ detection of changes in soil bacterial and fungal activities by measuring 13C incorporation into soil phospholipids fatty acids from 13C acetate. Soil Biol Biochem 31:1015–1020Google Scholar
  24. Bakken LR, Oisen RA (1983) Buoyant densities and dry-matter contents of microorganisms: conversion of a measured biovolume into biomass. Appl Environ Microbiol 45:1188–1195PubMedPubMedCentralGoogle Scholar
  25. Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 16:197–206PubMedGoogle Scholar
  26. Brand F, Taylor AFS, Agerer R (1992) Quantitative Erfessung bekannter Ektomykorrhizen in Fichtenversuchsfiächen nach Behandlung mit saurer Beregnung und Kalkung: Die Reakton der natürlichen Ektmykorrhiza-Population der Fichte auf saure Beregnung und Kalkung. Bericht BMFT-Projekt Nr. 0339175FGoogle Scholar
  27. Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192Google Scholar
  28. Begon M, Harper JJ, Townsend CR (1986) Ecology. Blackwell, OxfordGoogle Scholar
  29. Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401–409Google Scholar
  30. Bertaux J, Schmid M, Hutzler P, Hartmann A, Garbaye J, Frey-Klett P (2005) Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Environ Microbiol 7:1786–1795PubMedGoogle Scholar
  31. Blom JM, Vannini A, Vettraino AM, Hale MD, Godbold DL (2009) Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy. Mycorrhiza 20:25–38PubMedGoogle Scholar
  32. Bomberg M, Timonen S (2009) Effect of tree species and mycorrhizal colonisation on the archaeal population of boreal forest rhizospheres. Appl Environ Microbiol 75:308–315PubMedPubMedCentralGoogle Scholar
  33. Brant JB, Myrold DD, Sulzman EW (2006) Root controls on soil microbial community structure in forest soils. Oecologia 148:650–659PubMedGoogle Scholar
  34. Branzanti MB, Rocca E, Zambonelli A (1994) Influenza di funghi ectomicorrizici su Phytophthora cambivora e P. cinnamomi del castagno. Mycol Ital 1994:47–52Google Scholar
  35. Branzanti MB, Rocca E, Pisi A (1999) Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9:103–109Google Scholar
  36. Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800PubMedPubMedCentralGoogle Scholar
  37. Calvaruso C, Turpault M-P, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb Ecol 54:567–577PubMedGoogle Scholar
  38. Chapin SF III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, BerlinGoogle Scholar
  39. Chakraborty S, Theodorou C, Bowen GD (1985) The reduction of root colonization by mycorrhizal fungi by mycophagous amoeba. Can J Microbiol 31:295–297Google Scholar
  40. Chung H, Zak DR, Lilleskov EA (2006) Fungal community composition and metabolism under elevated CO2 and O3. Oecologia 147:143–154PubMedGoogle Scholar
  41. Colpaert JV, van Tichelen KK (1996) Mycorrhizas and environmental stress. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Symposium of the British Mycological Society. Cambridge University Press, Cambridge, pp 109-128Google Scholar
  42. Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319PubMedGoogle Scholar
  43. Courty P-E, Pouysegur R, Buée M, Garbaye J (2006) Laccase and phosphatase activities of the dominant ectomycorrhizal types in a lowland oak forest. Soil Biol Biochem 38:1219–1222Google Scholar
  44. Courty P-E, Bréda N, Garbaye J (2007) Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil Biol Biochem 39:1655–1663Google Scholar
  45. Courty P-E, Labbé J, Kohler A, Marçais B, Bastien C, Churin JL, Garbaye J, Le Tacon F (2011) Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. J Exp Bot 62:249–260PubMedPubMedCentralGoogle Scholar
  46. Dahlberg A, Jonsson L, Nylund J (1997) Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in South Sweden. Can J Bot 75:1223–1335Google Scholar
  47. Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535Google Scholar
  48. Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature (London) 287:834–836Google Scholar
  49. Duponnois R, Garbaye J (1991) Mycorrhiza helper bacteria associated with Douglas fir - Laccaria laccata symbiosis: effects in aseptic and in glasshouse conditions. Ann Forest Sci 48:239–251Google Scholar
  50. Dyckmans J, Flessa H, Brinkmann K, Mai C, Polle A (2002) Carbon and nitrogen dynamics in acid detergent fibre lignins of beech (Fagus sylvatica L.) during the growth phase. Plant Cell Environ 25:469–478Google Scholar
  51. Ekblad A, Wallander H, Carlsson R, Huss-Danell K (1995) Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana. New Phytol 131:443–451Google Scholar
  52. Esperschütz J, Pritsch K, Gattinger A, Buegger F, Winkler JB, Munch JC, Schloter M (2009a) Microbial response to exudates in the rhizosphere of young beech trees (Fagus sylvatica L.) after dormancy. Soil Biol Biochem 41:976–1985Google Scholar
  53. Esperschütz J, Pritsch K, Gattinger A, Welzl G, Haesler J, Buegger F, Winkler JB, Munch JC, Schloter M (2009b) Influence of chronic ozone stress on carbon translocation pattern into rhizosphere microbial communities of beech trees (Fagus sylvatica L.) during a growing season. Plant Soil 323:85–95Google Scholar
  54. Fogel R, Hunt G (1979) Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Can J Forest Res 9:245–256Google Scholar
  55. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedGoogle Scholar
  56. Gadgil RL, Gadgil PD (1975) Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. N Z J Forest Sci 5:35–41Google Scholar
  57. Gebhardt S (2005) Räumliche Struktur und zeitliche Dynamik von Ektomykorrhizagemeinschaften in Roteichenökosystemen der Niederlausitz, Cottbuser Schriften. vol 34, Brandenburgische Technische Universität Cottbus, CottbusGoogle Scholar
  58. Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390PubMedGoogle Scholar
  59. Godbold DL, Berntson GM, Bazzaz FA (1997) Growth and mycorrhizal colonization of three North American tree species under elevated CO2. New Phytol 137:433–440Google Scholar
  60. Godbold DL, Berntson GM (1997) Elevated atmospheric CO2 concentration changes ectomycorrhizal morphotype assemblages in Betula papyrifera. Tree Physiol 17:347–350PubMedGoogle Scholar
  61. Gorissen A, Kuyper TW (2000) Fungal species-specific responses of ectomycorrhizal Scots pine (Pinus sylvestris) to elevated CO2. New Phytol 146:163–168Google Scholar
  62. Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56Google Scholar
  63. Grebenč T, Kraigher H (2007) Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone. Plant Biol 9:279–287PubMedGoogle Scholar
  64. Griffiths RP, Ingham ER, Caldwell BA, Castellano MA, Cromack K (1991) Microbial characteristics of ectomycorrhizal mat communities in Oregon and California (USA). Biol Fertil Soils 11:196–202Google Scholar
  65. Griffiths RP, Baham JE, Caldwell BA (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biol Biochem 26:331–337Google Scholar
  66. Haberer K, Grebenc T, Alexou M, Gessler A, Kraigher H, Rennenberg H (2007) Effects of long-term free-air ozone fumigation on d15N and total N in Fagus sylvatica and associated mycorrhizal fungi. Plant Biol 9:242–252PubMedGoogle Scholar
  67. Häberle K-H, Werner H, Fabian P, Pretzsch H, Reiter I, Matyssek R (1999) ‘Free-air’ ozone fumigation of mature forest trees: a concept for validating AOT40 under stand conditions. In: Fuhrer J, Achermann B (eds) Critical level for ozone – level II. Swiss Agency for the Environment, Forests and Landscape (SAEFL), Bern, pp 133–137Google Scholar
  68. Hasselquist NJ, Varagas R, Allen MF (2010) Using soil sensing technology to examine interactions and controls between ectomycorrhizal growth and environmental factors on soil CO2 dynamics. Plant Soil 331:17–29Google Scholar
  69. Hedh J, Wallander H, Erland S (2008) Ectomycorrhizal mycelial species composition in apatite amended and non amended mesh bags buried in a phosphorus poor spruce forest. Mycol Res 112:681–688PubMedGoogle Scholar
  70. Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD, Sims SE (2006) Measuring external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters. New Phytol 171:179–186PubMedGoogle Scholar
  71. Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78Google Scholar
  72. Ingham ER, Massicotte HB (1994) Protozoan communities around conifer roots colonized by ectomycorrhizal fungi. Mycorrhiza 5:53–61Google Scholar
  73. Kammerbauer H, Agerer R, Sandermann H (1989) Studies on ectomycorrhiza XXII. Mycorrhizal rhizomorphs of Thelephora terrestris and Pisolithus tinctorius in association with Norway spruce (Picea abies): formation in vitro and translocation of phosphate. Trees 3:78–84Google Scholar
  74. Kasurinen A, Keinänen MM, Kaipainen S, Nilsson L-O, Vapaavuori E, Kontro MH, Holopainen T (2005) Below-ground responses of silver birch trees exposed to elevated CO2 and O3 levels during three growing seasons. Glob Change Biol 11:1167–1169Google Scholar
  75. Kennedy PG, Bruns TD (2005) Priority effects determine the outcome of ectomycorrhizal competition between two Rhizopogon species colonizing Pinus radiata seedlings. New Phytol 166:631–638PubMedGoogle Scholar
  76. King JS, Pregitzer KS, Zak DR, Sober J, Isebrands JG, Dickson RE, Hendrey GR, Karnosky DF (2001) Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128:237–250Google Scholar
  77. Koch N, Andersen CP, Raidl S, Agerer R, Matyssek R, Grams TEE (2007) Temperature-respiration relationships differ in mycorrhizal and non-mycorrhizal root systems of Picea abies (L.) Karst. Plant Biol 9:545–549PubMedGoogle Scholar
  78. Korkama T, Fritze H, Pekkanen A, Pennanen T (2006) Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol 173:798–807Google Scholar
  79. Kozlowski TT, Krammer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic, San DiegoGoogle Scholar
  80. Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci Z Pflanzenernahr Bodenkd 165:382–396Google Scholar
  81. Leake JR, Donnelly DP, Boddy L (2002) Interactions between ectomycorrhizal and saprotrophic fungi. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Ecological studies vol 157 Springer, Berlin, pp 346–372Google Scholar
  82. Leake J, Johnson D, Donelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystems. Can J Bot 82:1016–1045Google Scholar
  83. Li CY, Massicotte HB, Moore LVH (1992) Nitrogen-fixing Bacillus sp. associated with Douglas-fir tuberculate ectomycorrhizae. Plant Soil 140:35–40Google Scholar
  84. Liese W (1964) Über den Abbau verholzter Zellwände durch Moderfäulepilze. Holz Roh Werkstoff 22:289–295Google Scholar
  85. Liese W (1970) Ultrastructural aspects of woody tissue disintegration. Ann Rev Phytopathol 8:231–258Google Scholar
  86. Lindahl B, Stenlid J, Olsson S, Finlay R (1999) Translocation of 32p between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol 144:183–193Google Scholar
  87. Lindahl B, Stenlid J, Finlay R (2001) Effects of resource availability on mycelial interactions and 32P transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms. FEMS Microbiol Ecol 38:43–52Google Scholar
  88. Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects host/pathogen interaction and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biol 7:640–649PubMedGoogle Scholar
  89. Luedemann G, Matyssek R, Winkler J, Grams TEE (2009) Contrasting ozone × pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies). Plant Soil 323:47–60Google Scholar
  90. Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10Google Scholar
  91. Markkola AM, Othonen R, Tarvainen O, Ahonen-Jonnarth U (1995) Estimates of fungal biomass in Scots pine stands on an urban pollution gradient. New Phytol 131:139–147Google Scholar
  92. Marschner H (1995) Mineral nutrition of higher plants. Academic, LondonGoogle Scholar
  93. Marx DH, Davey CB (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. III. Resistance of aseptically formed mycorrhizae to infection by Phytophthora cinnamomi. Phytopathology 59:549–558Google Scholar
  94. Meyer FH (1962) Die Mykorrhiza der Waldbäume. Mitt Deutsch Dendrol Ges 62:55–59Google Scholar
  95. Mitchell MJ, Parkinson D (1976) Fungal feeding of orbatid mites (Acari: Cryptostigmata) in an aspen woodland soil. Ecology 57:02–312Google Scholar
  96. Mogge B, Loferer C, Agerer R, Hutzler P, Hartmann A (2000) Bacterial community structure and colonization patterns of Fagus sylvatica L. ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9:271–278Google Scholar
  97. Nikolova PS, Andersen CP, Blaschke H, Matyssek R, Häberle K-H (2010) Belowground effects of enhanced tropospheric ozone and drought in a beech/ spruce forest (Fagus sylvatica L./Picea abies [L.] Karst). Environ Pollut 158:1071–1078PubMedGoogle Scholar
  98. Nye PH, Tinker PB (1977) Solute movement in the soil-root system, Sudies in ecology. vol 4, Blackwell, OxfordGoogle Scholar
  99. Parrent JL, Morris WF, Vilgalys R (2006) CO2-enrichment and nutrient availability alter ectomycorrhizal fungai communities. Ecology 87:2278–2287PubMedGoogle Scholar
  100. Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by etomycorrizal fungi. II. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179:141–150Google Scholar
  101. Parladé J, Alvarez JF (1993) Coinoculation of aseptically grown Douglas fir with pairs of ectomycorrhizal fungi. Mycorrhiza 3:93–96Google Scholar
  102. Perez-Moreno J, Read DJ (2000) Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytol 145:301–309Google Scholar
  103. Phillips DL, Johnson MG, Tingey DT, Storm MJ (2009) Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms. Oecologia 160:827–837PubMedGoogle Scholar
  104. Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus etomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751Google Scholar
  105. Pritsch K, Courty P, Churin J-L, Cloutier-Hurteau B, Ali M, Damon C, Duchemin M, Egli S, Ernst J, Fraissinet-Tachet L, Kuhar F, Legname E, Marmeisse R, Müller A, Nikolova P, Peter M, Plassard C, Richard F, Schloter M, Selosse M-A, Franc A, Garbaye J (2011) Optimized assay and storage conditions for enzyme activity profiling of ectomycorrhizae. Mycorrhiza 21:589–600PubMedGoogle Scholar
  106. Pritsch K, Garbaye J (2011) Enzyme secretion by ECM-fungi and exploitation of mineral nutrients from soil organic matter. Ann Forest Sci 68:25–32Google Scholar
  107. Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Hartmann A (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J Microbiol Methods 58:233–241PubMedGoogle Scholar
  108. Pritsch K, Luedemann G, Matyssek R, Hartmann A, Schloter M, Scherb H, Grams TEE (2005) Mycorrhizosphere responsiveness to atmospheric ozone and inoculation with Phytophthora citricola in a phytotron experiment with spruce/beech mixed cultures. Plant Biol 7:718–727PubMedGoogle Scholar
  109. Pritsch K, Günthardt-Goerg MS, Munch JC, Schloter M (2006) Influence of heavy metals and acid rain on enzymatic activities in the mycorrhizosphere of model forest ecosystems. Water Snow Landscape Res 80:289–304Google Scholar
  110. Pritsch K, Esperschütz J, Haesler F, Raidl S, Winkler B, Schloter M (2009) Structure and activities of ectomycorrhizal and microbial communities in the rhizosphere of Fagus sylvatica under ozone and pathogen stress in a lysimeter study. Plant Soil 323:97–109Google Scholar
  111. Raidl S (1997) Studien zur Ontogenie an Rhizomorphen von Ektomykorrhizen, Bibliotheca Mycologica. vol 169, Cramer, Berlin, pp 1–184Google Scholar
  112. Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning. An integrative plant-fungal process. Chapman & Hall, New York, pp 102–133Google Scholar
  113. Rey A, Jarvis PG (1997) Growth response of young birch trees (Betula pendula Roth.) after four and a half years of CO2 exposure. Ann Bot 80:809–816Google Scholar
  114. Rillig CM, Treseder KK, Allen MF (2002) Global change and mycorrhizal fungi. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology, Ecological studies. vol 157, Springer, Berlin, pp 135–160Google Scholar
  115. Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45Google Scholar
  116. Rineau F, Garbaye J (2009) Does forest liming impact the enzymatic profiles of ectomycorrhizal communities through specialized fungal symbionts? Mycorrhiza 19:493–500PubMedGoogle Scholar
  117. Rosling A, Rosenstock N (2008) Ectomycorrhizal fungi in mineral soil. Miner Mag 72:127–130Google Scholar
  118. Rousseau JV, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol 128:639–644Google Scholar
  119. Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556PubMedPubMedCentralGoogle Scholar
  120. Rygiewicz PT, Andersen CP (1994) Mycorrhiza alter quality and quantity of carbon allocated below ground. Nature (London) 369:58–60Google Scholar
  121. Rygiewicz PT, Johnson MG, Ganio LM, Tingey DT, Storm MJ (1997) Lifetime and temporal occurrence of ectomycorrhizae on ponderosa pine (Pinus ponderosa Laws.) seedlings grown under varied atmospheric CO2 and nitrogen levels. Plant Soil 189:275–287Google Scholar
  122. Scattolin L, Montecchio L, Mosca E, Agerer R (2008) Vertical distribution of the ectomycorrhizal community in the top soil of Norway spruce stands. Eur J Forest Res 127:347–357Google Scholar
  123. Schelkle M, Ursic M, Farquhar M, Peterson RL (1996) The use of laser scanning confocal microscopy to characterize mycorrhizas of Pinus strobus L. and to localize associated bacteria. Mycorrhiza 6:431–440Google Scholar
  124. Schmid R, Liese W (1964) Über die mikromorphologischen Veränderungen der Zellwandstrukturen von Buchen- und Fichtenholz beim Abbau durch Polyporus versicolor (L.) Fr. Archiv Mikrobiol 47:260–276Google Scholar
  125. Schramm JR (1966) Plant colonization studies on black wastes from anthracite mining in Pennsylvania. Trans Am Philos Soc 56:5–189Google Scholar
  126. Schubert R, Raidl S, Funk R, Bahnweg G, Müller-Starck G, Agerer R (2003) Quantitative detection of agar-cultivated and rhizotron-grown Piloderma croceum Erikss. & Hjortst. by ITS-based fluorescent PCR. Mycorrhiza 13:159–165PubMedGoogle Scholar
  127. Simard SW, Durall DM, Jones MD (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Mycorrhzal ecology, Ecological studies. vol 157, Springer, Berlin, pp 33–74Google Scholar
  128. Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155Google Scholar
  129. Sittig U (1999) Zur saisonalen Dynamik von Ektomykorrhizen der Buche (Fagus sylvatica L.). Ber Forsch Waldökosyst 162:1–119Google Scholar
  130. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San DiegoGoogle Scholar
  131. Smits MM, Bonneville S, Haward S, Leake JR (2008) Ectomycorrhizal weathering, a matter of scale? Miner Mag 72:131–134Google Scholar
  132. Tedersoo L, Kõjalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165Google Scholar
  133. Theuerl S, Buscot F (2010) Laccases: toward disentangling their diversity and functions in relation to soil organic matter cycling. Biol Fertil Soils 46:215–225Google Scholar
  134. Timonen S, Hurek T (2006) Characterization of culturable bacterial populations associating with Pinus sylsvestris - Suillus bovinus mycorrhizospheres. Can J Microbiol 52:769–778PubMedGoogle Scholar
  135. Timonen S, Jørgensen K, Haahtela K, Sen R (1998) Bacterial community structure at defined locations of the Pinus sylvestris-Suillus bovinus and Pinus sylvestris-Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Can J Microbiol 44:499–513Google Scholar
  136. Timonen S, Christensen S, Ekelund F (2004) Distribution of protozoa in scots pine mycorrhizospheres. Soil Biol Biochem 36:1087–1093Google Scholar
  137. Tingey DT, Phillips DL, Johnson MG (2000) Elevated CO2 and conifer roots: effects on growth, life span and turnover. New Phytol 147:87–103Google Scholar
  138. van Schöll L, Hoffland E, van Beeren N (2006) Organic anion exudation by ectomycorrhizal fungi and Pinus sylvestris in response to nutrient deficiencies. New Phytol 170:153–163PubMedGoogle Scholar
  139. Vogt KA, Grier CC, Meier CE, Edmonds RL (1982) Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology 63:370–380Google Scholar
  140. Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218:249–256Google Scholar
  141. Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760Google Scholar
  142. Wallander H, Mahmood S, Hagerberg D, Johansson L, Pallon J (2003) Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiol Ecol 44:57–65PubMedGoogle Scholar
  143. Weigt R (2010) Effects of elevated ground-level ozone on nitrogen acquisition of mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) trees. Doctoral thesis, Weihenstephan Center of Life Sciences, TU MünchenGoogle Scholar
  144. Weigt R, Raidl S, Verma R, Rodenkirchen H, Göttlein A, Agerer R (2010) Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis. Mycorrhiza 21:375–391PubMedGoogle Scholar
  145. Weigt R, Verma R, Raidl S, Agerer R (2012) Exploration type specific standard values of extramatrical mycelium - a step towards assessing ectomycorrhizal space occupation and biomass in natural soil. Mycol Prog 11:287–297, ‘Erratum’Google Scholar
  146. Werner A, Zadworny M (2003) In vitro evidence of mycoparasitism of the ectomycorrhizal fungus Laccaria laccata against Mucor hiemalis in the rhizosphere of Pinus sylvestris. Mycorrhiza 13:41–47PubMedGoogle Scholar
  147. Wöllecke J (2001) Charakterisierung der Mykorrhizazönosen zweier Kiefernforste unterschiedlicher Trophie, Cottbuser Schriften zu Bodenschutz und Rekultivierung. vol 17, Brandenburgische Technische Universität Cottbus, CottbusGoogle Scholar
  148. Wu B, Nara K, Hogetsu T (1999) Competition between ectomycorrhizal fungi colonizing Pinus densiflora. Mycorrhiza 9:151–159Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • R. Agerer
    • 1
    Email author
  • A. Hartmann
    • 2
  • K. Pritsch
    • 3
  • S. Raidl
    • 1
  • M. Schloter
    • 4
  • R. Verma
    • 1
  • R. Weigt
    • 1
    • 5
  1. 1.Department of Biology I and GeoBio-Center, Organismic Biology, MycologyLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Research Unit Microbe-Plant InteractionsHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  3. 3.Institute of Soil EcologyHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  4. 4.Environmental GenomicsHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  5. 5.Department of Ecology and Ecosystem Management, Ecophysiology of PlantsTechnische Universität MünchenFreisingGermany

Personalised recommendations