Skip to main content

A Cluster-Based Boosting Strategy for Red Eye Removal

  • Chapter
  • First Online:
Computational Intelligence in Image Processing

Abstract

Red eye artifact is caused by the flash light reflected off a person’s retina. This effect often occurs when the flash light is very close to the camera lens, as in most compact imaging devices. To reduce these artifacts, most cameras have a red eye flash mode which fires a series of preflashes prior to picture capture. The major disadvantage of the preflash approach is power consumption (e.g., flash is the most power-consuming device on the camera). Alternatively, red eyes can be detected after photo acquisition. Some photo-editing softwares make use of red eye removal tools that require considerable user interaction. To overcome this problem, different techniques have been proposed in literature. Due to the growing interest of industry, many automatic algorithms, embedded on commercial software, have been patented in the last decade. The huge variety of approaches has permitted research to explore different aspects and problems of red eyes identification and correction. The big challenge now is to obtain the best results with the minimal number of visual errors. This chapter critically reviews some of the state-of-the-art approaches for red eye removal. We also discuss a recent technique whose strength is due to a multimodal classifier which is obtained by combining clustering and boosting in order to recognize red eyes represented in the gray codes feature space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Corel Paint Shop Pro red eye removal tool.

  2. 2.

    Picture taken from Petschnigg et al. [36].

References

  1. Mir, J. M.: Apparatus & method for minimizing red-eye in flash photography. U.S. Patent, no. US4285588 (1981)

    Google Scholar 

  2. Battiato, S., Bruna, A. R., Messina, G., Puglisi, G.: Image Processing for Embedded Devices. Bentham Science Publisher, Karachi (2010)

    Google Scholar 

  3. Adobe Photoshop, www.adobe.com/products/photoshop

  4. Corel Paint Shop Pro, www.jasc.com

  5. ACDSee, www.acdsee.com

  6. Gasparini, F., Schettini, R.: Automatic red-eye removal for digital photography. In: Lukac, R. (ed.) Single-Sensor Imaging: Methods and Applications For Digital Cameras, pp. 429–457. CRC Press, Boston (2008)

    Google Scholar 

  7. Messina, G., Meccio, T.: Red eye removal. In: Battiato, S., Bruna, A.R., Messina, G., Puglisi, G. (eds.) Image Processing for Embedded Devices. Applied Digital Imaging Ebook Series. Bentham Science, Karachi (2010)

    Google Scholar 

  8. Gasparini, F., Schettini, R.: A review of redeye detection and removal in digital images through patents. Recent Pat. Electr. Eng. 2(1), 45–53 (2009)

    Article  Google Scholar 

  9. Battiato, S., Farinella, G.M., Guarnera, M., Messina, G., Ravì, D.: Red-eyes removal through cluster based linear discriminant analysis. In: International Conference on Image Processing (ICIP 2010), Hong Kong (2010)

    Google Scholar 

  10. Battiato, S., Farinella, G.M., Guarnera, M., Messina, G., Ravì, D.: Boosting gray codes for red eyes removal. In: International Conference on Pattern Recognition (ICPR 2010), Instanbul (TK) (2010)

    Google Scholar 

  11. Battiato, S., Farinella, G.M., Guarnera, M., Messina, G., Ravì, D.: Red-eyes removal through cluster based boosting on gray codes. EURASIP Journal on Image and Video Processing, Special Issue on Emerging Methods for Color Image and Video Quality Enhancement, 2010, pp. 1–11 (2010)

    Google Scholar 

  12. Zhang, L., Sun, Y., Li, M., Zhang, H.: Automated red-eye detection and correction in digital photographs. In: International Conference on Image Processing (2004)

    Google Scholar 

  13. Held, A.: Model-based correction of red-eye defects. In: IS&T Color Imaging Conference (CIC-02), pp. 223–228 (2002)

    Google Scholar 

  14. Gaubatz, M., Ulichney, R.: Automatic red-eye detection and correction. In: International Conference on Image Processing (2002)

    Google Scholar 

  15. Smolka, B., Czubin, K., Hardeberg, J.Y., Plataniotis, K.N., Szczepanski, M., Wojciechowski, K.W.: Towards automatic redeye effect removal. Pattern Recognit. Lett. 24(11), 1767–1785 (2003)

    Article  Google Scholar 

  16. Gasparini, F., Schettini, R.: Automatic redeye removal for smart enhancement of photos of unknown origin. In: Visual Information and Information Systems (VISUAL-2005). Lecture Notes in Computer Science, vol. 3736, pp. 226–233 (2005)

    Google Scholar 

  17. Willamowski, J., Csurka, G.: Probabilistic automatic red eye detection and correction. In: IEEE International Conference on Pattern Recognition (ICPR-06), pp. 762–765 (2006)

    Google Scholar 

  18. Patti, A. J., Konstantinides, K., Tretter, D., Lin, Q.: Automatic digital redeye reduction. In: International Conference on Image Processing, Chicago (1998)

    Google Scholar 

  19. Benati, P., Gray, R., Cosgrove, P.: Automated detection and correction of eye color defects due to flash illumination. U.S. Patent, no. US5748764 (1998)

    Google Scholar 

  20. Volken, F., Terrier, J., Vandewalle, P.: Automatic red-eye removal based on sclera and skin tone detection. In: European Conference on Color in Graphics, Imaging and Vision, pp. 359–364 (2006)

    Google Scholar 

  21. Ferman, A. M.: Automatic detection of red-eye artifacts in digital color photos. In: International Conference on Image Processing (2008)

    Google Scholar 

  22. Luo, H., Yen, J., Tretter, D.: An efficient automatic redeye detection and correction algorithm. In: International Conference on Pattern Recognition (2004)

    Google Scholar 

  23. Safonov, I.V.: Automatic red-eye detection. In: International conference on the Computer Graphics and Vision (2007)

    Google Scholar 

  24. Schildkraut, J. S., Gray, R. T.: A fully automatic redeye detection and correction algorithm. In: International Conference on Image Processing (2002)

    Google Scholar 

  25. Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)

    Article  Google Scholar 

  26. Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.: Face detection in color images. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 696–706 (2002)

    Article  Google Scholar 

  27. Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  28. Hongliang, L., Ngan, K.N., Qiang, L.: Faceseg: automatic face segmentation for real-time video. IEEE Trans. Multimed. 11(1), 77–88 (2009)

    Article  Google Scholar 

  29. Phung, S.L., Bouzerdoum, A., Chai, D.: Skin segmentation using color pixel classification: analysis and comparison. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 148–154 (2005)

    Article  Google Scholar 

  30. Corcoran, P., Bigioi, P., Steinberg, E., Pososin, A.: Automated in-camera detection of flash eye-defects. In: International Conference on Consumer Electronics (2005)

    Google Scholar 

  31. Safonov, I.V., Rychagova, M.N., Kang, K., Kim, S.H.: Automatic red eye correction and its quality metric. In: SPIE Electronic Imaging (2008)

    Google Scholar 

  32. Marchesotti, L., Bressan, M., Csurka, G.: Safe red-eye correction plug-in using adaptive methods. In: International Conference on Image Analysis and Processing—Workshops (ICIAPW-07), pp. 192–165 (2007)

    Google Scholar 

  33. Hardeberg, J.Y.: Red eye removal using digital color image processing. Image Processing, Image Quality, Image Capture, System Conference, Montreal, Canada, pp. 283–287 (2001)

    Google Scholar 

  34. Yoo, S., Park, R.-H.: Red-eye detection and correction using inpainting in digital photographs. IEEE Trans. Consum. Electr. 55(3), 1006–1014 (2009)

    Article  Google Scholar 

  35. Miao, X.-P., Sim, T.: Automatic red-eye detection and removal. In: International Conference on Multimedia and Expo (2004)

    Google Scholar 

  36. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M. F., Hoppe, H., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 21(3), 673–678 (2004)

    Google Scholar 

  37. Saaty, T.L.: Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World, vol. 2. Analytic Hierarchy Process Series, New Edition (2001)

    Google Scholar 

  38. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, Hoboken (2000)

    Google Scholar 

  39. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Upper Saddle River (2008)

    Google Scholar 

  40. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 32, 102–107 (2000)

    Google Scholar 

  41. Schapire, R.E.: The boosting approach to machine learning: an overview. In: MSRI Workshop on Nonlinear Estimation and Classification (2001)

    Google Scholar 

  42. Schapire, R.E.: The strength of weak learnability. In: Machine Learning, pp. 197–227 (1990)

    Google Scholar 

  43. Lienhart, R., Kuranov, E., Pisarevsky, V.: Empirical analysis of detection cascades of boosted classifiers for rapid object detection. In: DAGM 25th Pattern Recognition Symposium, pp. 297–304 (2003)

    Google Scholar 

  44. Torralba, A., Murphy, K.P.: Sharing visual features for multiclass and multiview object detection. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 854–869 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano Battiato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Battiato, S., Farinella, G.M., Ravì, D., Guarnera, M., Messina, G. (2013). A Cluster-Based Boosting Strategy for Red Eye Removal. In: Chatterjee, A., Siarry, P. (eds) Computational Intelligence in Image Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30621-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30621-1_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30620-4

  • Online ISBN: 978-3-642-30621-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics