Skip to main content

Sparse Hidden Markov Models for Surgical Gesture Classification and Skill Evaluation

  • Conference paper
Book cover Information Processing in Computer-Assisted Interventions (IPCAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7330))

Abstract

We consider the problem of classifying surgical gestures and skill level in robotic surgical tasks. Prior work in this area models gestures as states of a hidden Markov model (HMM) whose observations are discrete, Gaussian or factor analyzed. While successful, these approaches are limited in expressive power due to the use of discrete or Gaussian observations. In this paper, we propose a new model called sparse HMMs whose observations are sparse linear combinations of elements from a dictionary of basic surgical motions. Given motion data from many surgeons with different skill levels, we propose an algorithm for learning a dictionary for each gesture together with an HMM grammar describing the transitions among different gestures. We then use these dictionaries and the grammar to represent and classify new motion data. Experiments on a database of surgical motions acquired with the da Vinci system show that our method performs on par with or better than state-of-the-art methods.This suggests that learning a grammar based on sparse motion dictionaries is important in gesture and skill classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barden, C., Specht, M., McCarter, M., Daly, J., Fahey, T.: Effects of limited work hours on surgical training. Obstetrical & Gynecological Survey 58(4), 244–245 (2003)

    Article  Google Scholar 

  2. Datta, V., Mackay, S., Mandalia, M., Darzi, A.: The use of electromagnetic motion tracking analysis to objectively measure open surgical skill in laboratory-based model. Journal of the American College of Surgery 193, 479–485 (2001)

    Article  Google Scholar 

  3. Judkins, T., Oleynikov, D., Stergiou, N.: Objective evaluation of expert and novice performance during robotic surgical training tasks. Surgical Endoscopy 1(4) (2008)

    Google Scholar 

  4. Richards, C., Rosen, J., Hannaford, B., Pellegrini, C., Sinanan, M.: Skills evaluation in minimally invasive surgery using force/torque signatures. Surgical Endoscopy 14, 791–798 (2000)

    Article  Google Scholar 

  5. Yamauchi, Y., Yamashita, J., Morikawa, O., Hashimoto, R., Mochimaru, M., Fukui, Y., Uno, H., Yokoyama, K.: Surgical Skill Evaluation by Force Data for Endoscopic Sinus Surgery Training System. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 44–51. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Rosen, J., Hannaford, B., Richards, C., Sinanan, M.: Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills. IEEE Trans. Biomedical Eng. 48(5), 579–591 (2001)

    Article  Google Scholar 

  7. Reiley, C.E., Hager, G.D.: Task versus Subtask Surgical Skill Evaluation of Robotic Minimally Invasive Surgery. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 435–442. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Rosen, J., Solazzo, M., Hannaford, B., Sinanan, M.: Task decomposition of laparo-scopic surgery for objective evaluation of surgical residents’ learning curve using hidden Markov model. Computer Aided Surgery 7(1), 49–61 (2002)

    Article  Google Scholar 

  9. Varadarajan, B., Reiley, C., Lin, H., Khudanpur, S., Hager, G.: Data-Derived Models for Segmentation with Application to Surgical Assessment and Training. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 426–434. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Varadarajan, B.: Learning and Inference Algorithms for Dynamical System Models of Dextrous Motion. PhD thesis, Johns Hopkins University (2011)

    Google Scholar 

  11. Leong, J.J.H., Nicolaou, M., Atallah, L., Mylonas, G.P., Darzi, A.W., Yang, G.-Z.: HMM Assessment of Quality of Movement Trajectory in Laparoscopic Surgery. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 752–759. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Lin, H.C., Shafran, I., Murphy, T.E., Okamura, A.M., Yuh, D.D., Hager, G.D.: Automatic Detection and Segmentation of Robot-Assisted Surgical Motions. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 802–810. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Aharon, M., Elad, M., Bruckstein, A.M.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. on Signal Processing 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  14. Forney Jr., G.D.: The Viterbi algorithm. Proceedings of the IEEE 61(3) (1973)

    Google Scholar 

  15. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist. 41(1), 164–171 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  17. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. on Information Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  18. Dosis, A., Bello, F., Gillies, D., Undre, S., Aggarwal, R., Darzi, A.: Laparoscopic task recognition using hidden markov models. Studies in Health Technology and Informatics 111, 115–122 (2005)

    Google Scholar 

  19. Tipping, M., Bishop, C.: Probabilistic principal component analysis. Journal of the Royal Statistical Society 61(3), 611–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tipping, M., Bishop, C.: Mixtures of probabilistic principal component analyzers. Neural Computation 11(2), 443–482 (1999)

    Article  Google Scholar 

  21. McLachlan, G.J., Peel, D., R.W.B.: Modelling high-dimensional data by mixture of factor analyzers. Computational Statistics and Data Analysis 41, 379–388 (2003)

    Article  MathSciNet  Google Scholar 

  22. Olshausen, B.A., Field, B.J.: Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Research (1997)

    Google Scholar 

  23. Engan, K., Aase, S.O., Husoy, J.H.: Method of optimal directions for frame design. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (1999)

    Google Scholar 

  24. Reiley, C.E., Lin, H.C., Varadarajan, B., Vagolgyi, B., Khudanpur, S., Yuh, D.D., Hager, G.D.: Automatic recognition of surgical motions using statistical modeling for capturing variability. In: Medicine Meets Virtual Reality, pp. 396–401 (2008)

    Google Scholar 

  25. Lin, H.: Structure in Surgical Motion. PhD thesis. Johns Hopkins University (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tao, L., Elhamifar, E., Khudanpur, S., Hager, G.D., Vidal, R. (2012). Sparse Hidden Markov Models for Surgical Gesture Classification and Skill Evaluation. In: Abolmaesumi, P., Joskowicz, L., Navab, N., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2012. Lecture Notes in Computer Science, vol 7330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30618-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30618-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30617-4

  • Online ISBN: 978-3-642-30618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics