Skip to main content

Cyanobacterial and Algal Allelopathy

  • Chapter
  • First Online:
Allelopathy

Abstract

Allelopathy has been known in both aquatic as well as terrestrial ecosystems. Most of the detailed studies have employed terrestrial areas, whereas aquatic ones took the back seat in terms of studies conducted, primarily due to dilution of allelochemicals in such habitats. However, phytoplankton dominance in a water body depends upon many complex factors, including release of allelochemicals by these organisms. These tiny organisms release a spectrum of metabolites in water, which differentially regulate the growth of various algae and cyanobacteria. Allelochemicals produced from these organisms cause habitat shift, control water bloom formation, biofertility, and other growth functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahluwalia AS (1993) Habitats and distribution. Indian Phycol Rev 2:41–58

    Google Scholar 

  • Ahluwalia AS (1998) Allelopathic interactions among algae. In: Kargupta AN, Goyal SK, Verma BN (eds) Advances in phycology. APC Publications Pvt Ltd, New Delhi, pp 307–324

    Google Scholar 

  • Ahluwalia AS (2004) Cyanobacterial Differentiation. Pb Univ Res J (Sci.) 54:7–11

    Google Scholar 

  • Ahluwalia AS, Ghawana VK (1998) Allelopathic interactions among cyanobacteria and rice and their potential role in biotechnology. In: Subramanian G, Kaushik BD, Venkataraman GS (eds) Cyanobacterial biotechnology, Oxford and IBH, New Delhi, pp 403–408

    Google Scholar 

  • Aliotta G, Greca-Della M, Monaco P, Pinto G, Pollio A, Previtera L (1990) In vitro algal inhibition by phytotoxin of Typha latifolia L. J Chem Ecol 16:1637–1646

    Article  Google Scholar 

  • Amade P, Lemee R (2008) Chemical defense of the Mediterranean alga Caulerpa taxifolia: Variations in caulerpenyne production. Fresenius Environ Bull 17:2098–2102

    Google Scholar 

  • Anthoni U, Christophersen C, Madsen J, Wium-Andersen S, Jacobsen N (1980) Biologically active sulphur compounds from the green alga Chara globularis. Phytochem 19:1228–1229

    Article  CAS  Google Scholar 

  • Arzul G, Seguel M, Guzman L, Denn EEL (1999) Comparison of allelopathic properties in three toxic Alexandirum species. J Exp Mar Biol Ecol 232:285–295

    Article  Google Scholar 

  • Bagchi SN (1995) Structure and site of action of an algicide from a cyanobacterium Oscillatoria late-virens. J Plant Physiol 146:372–374

    Article  CAS  Google Scholar 

  • Bagchi SN, Chauhan VS, Jyoti B (1993) Effect of an antibiotic from Oscillatoria late-virens on growth, photosynthesis and toxicity of Microcystis aeruginosa. Curr Microbiol 26:223–228

    Article  CAS  Google Scholar 

  • Bellen-Santini D, Arnaud PM, Bellan G, Verlaque M (1996) The influence of the introduced tropical alga Caulerpa taxifolia, on the biodiversity of the Mediterranean marine biota. J Mar Biol Assoc UK 76:235–237

    Article  Google Scholar 

  • Brammer ES (1979) Exclusion of phytoplankton in the proximity of dominant water-soldier (Stratiotes aloides). Freshwater Biol 9:233–249

    Article  Google Scholar 

  • Carmichael WW, Falconer IR (1993) Diseases related to freshwater blue-green algal toxins and control measures. In: Falconer IR (ed) Algal toxins in sea food and drinking water. Academic Press, London, pp 187–209

    Google Scholar 

  • Carmichael WW, Mehmood NA, Hyde EG (1990) Natural toxin from cyanobacteria (blue green algae). In: Hall S, Strichartz C (eds) Marine toxin: origin, structure and molecular pharmacology. American Chemical Society, Washington, pp 87–106

    Google Scholar 

  • ChandraMohan D, Purushottaman D, Kolhandaramalu R (1973) Soil phenolic and plant growth inhibition. Plant Soil 39:303–308

    Article  CAS  Google Scholar 

  • Cho J, Kuon E, Choi J, Hong S, Shin H, Hong Y (2001) Antifouling activity of sea weed extracts on the green alga Enteromorpha prolifera and the mussel Mytilus edulis. J Appl Phycol 13:117–125

    Article  Google Scholar 

  • Chou CH, Lin HJ (1976) Autointoxication mechanism of Oryza sativa. 1. Phytotoxic effect of decomposing rice residue in soil. J Chem Ecol 2:253–367

    Google Scholar 

  • Crawford SA (1979) Farm pond restoration using Chara vulgaris vegetation. Hydrobiol 62:17–31

    Article  CAS  Google Scholar 

  • Dedonder A, Van-Sumere CF (1971) The effect of phenolics and related compounds on the growth respiration of Chlorella vulgaris. Zeitschr. Pflanzenphysiol 65:70–80

    CAS  Google Scholar 

  • Della Greca M, Fiorentino A, Isidori M, Monaco P, Zarrelli A (2000) Antialgal ent-labdane diterpenes from Ruppia maritime. Phytochem 55:909–913

    Article  CAS  Google Scholar 

  • Della Greca M, Fiorentino A, Momaco P, Previtera L, Zarrelli A (2002) Phenanthrenoids from the wetland Juncus acutus. Phytochem 60:633–638

    Article  CAS  Google Scholar 

  • Dhingra R, Ahluwalia AS (2007) Cyanobacterial blooms in ponds of Punjab, India. Vegetos 20:79–82

    Google Scholar 

  • Doan NT, Rickards RW, Rothschild JM, Smith GD (2000) Allelopathic actions of alkaloid 12-epi-haplindole E isonitrile and calothrixin A from cyanobacteria of genera Fischerella and Calothrix. J Appl Phycol 12:409–416

    Article  CAS  Google Scholar 

  • Einhellig FA (1986) Mechanisms and modes of action of allelochemicals. In: Putnam AR, Tang CS (eds) The science of allelopathy, Wiley, New York, p 171–188

    Google Scholar 

  • Elakovich SD, Wooten JW (1987) An examination of the phytotoxicity of the water shield, Brasenia schreberi. Chem Ecol 13:1935–1940

    Article  Google Scholar 

  • Elisabeth MG, Walk CP, Friedrich J (1991) Fischerellin, a new allelochemical from the freshwater cyanobacterium, Fischerella muscicola. J Phycol 27:686–692

    Article  Google Scholar 

  • Erhard D, Gross EM (2006) Allelopathic activity of Elodea candensis and Eloedea nuttallii against epiphyte and phytoplankton. Aquat Bot 85:203–211

    Article  Google Scholar 

  • Fergola P, Cerasuolo M, Pollio A, Pinto G, DellaGreca M (2007) Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: experiments and mathematical model. Ecol Model 208:205–214

    Article  Google Scholar 

  • Ferrier MD, Butler BR, Terlizzi E (2005) The effects of barley straw (Hordeum vulgare) on the growth of freshwater algae. Bioresour Technol 96:1788–1795

    Article  PubMed  CAS  Google Scholar 

  • Figueredo CC, Giani A, Bird DF (2007) Does allelopathy contribute to Cylindrospermopsis raciborskii (cyanobacteria) bloom occurrence and geographic expansion. J Phycol 43:256–265

    Article  Google Scholar 

  • Fitzgerald GP (1969) Some factors in the competition or antagonism among bacteria, algae, and aquatic weeds. J Phycol 5:351–359

    Article  Google Scholar 

  • Flores E, Wolk CP (1986) Production by filamentous nitrogen fixing cyanobacteria of a bacteriocin and of other antibiotics that kill related strains. Arch Microbiol 145:215–219

    Article  PubMed  CAS  Google Scholar 

  • Forsberg C, Kleiven S, Willen T (1990) Absence of allelopathic effects of chara on phytoplankton in situ. Aquat Bot 38:289–294

    Article  Google Scholar 

  • Frankmolle WP, Larsen LK, Kaplan FR, Patterson GML, Knubel G, Moore RE (1992) Antifungal cyclic peptides from the terrestrial blue green alga Anabaena laxa. J Antibiot 45:1451–1457

    Article  PubMed  CAS  Google Scholar 

  • Gapoctika LD, Karaush GA (1985) Acquired tolerance to phenol by culture of the green alga Scenedesmus quadricauda. Vestin Mosk Univ 16:38–42

    Google Scholar 

  • Gleason FK (1990) The natural herbicide, cyanobacterin, specifically disrupt thylakoidal membrane structure in Euglena gracilis strain Z. FEMS Microbiol Lett 68:77–82

    Article  CAS  Google Scholar 

  • Gleason FK, Baxa CA (1986) Activity of a natural algicide, cyanobacterin, on eukaryotic microorganisms. FEMS Microbiol Lett 33:85–88

    Article  CAS  Google Scholar 

  • Gleason FK, Paulson JL (1984) Site of action of the natural algicide, cyanobacterin, in the blue green alga Synechococcus. Arch Microbiol 138:273–277

    Article  CAS  Google Scholar 

  • Gopal B, Goel U (1993) Competition and allelopathy in aquatic plant communities. Bot Rev 59:155–210

    Article  Google Scholar 

  • Gopal B, Trivedy RK, Goel RK (1984) Influence of water hyacinth and phytoplankton composition in a reservoir near Jaipur (India). Hydrobiology 69:859–865

    Google Scholar 

  • Gromov BV, Vepritskiy AA, Titova NN, Mamkayeva KA, Alexandrova OV (1991) Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia CALU892 (Cyanobacterium). J Appl Phycol 3:55–59

    Article  CAS  Google Scholar 

  • Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339

    Article  Google Scholar 

  • Gross EM, Hilt S, Lombardo MulderijG (2007) Searching for allelopathic effects of submerged macrophytes on phytoplankton–state of the art and open questions. Hydrobiology 584:77–88

    Article  CAS  Google Scholar 

  • Gross EM, Meyer H, Schilling G (1996) Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochem 41:133–138

    Article  CAS  Google Scholar 

  • Harder R (1917) Ernahrungsphysiologische Untersuchungen an Cyanophyceen, hauptsachlich dem endophytischen Nostoc punctiforme. Z Bot 9:145–242

    Google Scholar 

  • Harrison PG, Chan AT (1980) Inhibition of growth of micro-algae and bacteria by extracts of eelgrass (Zostera marina) leaves. Mar Biol 61:21–26

    Article  Google Scholar 

  • Hasler AD, Jones E (1949) Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30:359–365

    Article  Google Scholar 

  • Hellio C, Berge JP, Beaupoil C, Le-Gal Y, Bourgougnon N (2002) Screening of marine algal extracts anti settlement activities against microalgae and macroalgae. Biofouling 18:205–215

    Article  CAS  Google Scholar 

  • Hogetsu K, Okanishi R, Sugawara H (1960) Studies on the antagonistic relationship between phytoplankton and rooted aquatic plants. Jap J Limnol 21:124–130

    Article  Google Scholar 

  • Hong Y, Hu HY (2007) Effects of the aquatic extracts of Arundo donax L. on the growth of freshwater algae. Allelopathy J 20:315–325

    Google Scholar 

  • Hu HY, Hong Y (2008) Algal-bloom control by allelopathy of aquatic macrophytes—a review. J Environ Eng Sci 2:421–438

    Google Scholar 

  • Ikawa M, Haney JF, Sasner JJ (1996) Inhibition of chlorella growth by the lipids of cyanobacterium Microcystis aeruginosa. Hydrobiol 331:167–179

    Article  CAS  Google Scholar 

  • Inderjit (2001) Soils: environmental effect on allelochemical activity. Agron J 93:79–84

    Google Scholar 

  • Inderjit, Callaway RM (2003) Experimental design for the study of allelopathy. Plant Soil 256:1–11

    Google Scholar 

  • Inderjit, Dakshini KMM (1994) Algal allelopathy. Bot Rev 60:182–196

    Google Scholar 

  • Inderjit, Dakshini KMM (1997) Allelopathic effect of cyanobacterial inoculum on soil characteristics and cereal growth. Can J Bot 75:1267–1272

    Google Scholar 

  • Ionora A, Boersma M, Casotty R, Fontana A, Harder J, Hoffman F, Pavia H, Potin P, Poulet SA, Toth G (2006) New trends in marine chemical ecology. Estuar Coast 29:531–551

    Google Scholar 

  • Ishida K, Murakami M (2000) Kasumigamide, an antialgal peptide from the cyanobacterium Microcystis aeruginosa. J Organic Chem 65:5898–5900

    Article  CAS  Google Scholar 

  • Jasser I (1995) The influence of macrophytes on a phytoplankton community in experimental condition. Hydrobiology 306:21–32

    Article  CAS  Google Scholar 

  • Jeong J, Jin H, Sohn CH, Suh K, Hong Y (2000) Algicidal activity of sea weed Corallina pilulifera against red tide microalgae. J Appl Phycol 12:37–43

    Article  Google Scholar 

  • Jonsson PR, Pavia H, Toth G (2009) Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proc Natl Acad Sci U S A 106:11177–11182

    Article  PubMed  CAS  Google Scholar 

  • Jorgenson E (1950) Growth inhibiting substances formed by algae. Physiol Plant 9:712–726

    Article  Google Scholar 

  • Juttner F (1984) Dynamics of the volatile organic substances associated with cyanobacteria and algae in a eutrophic shallow lake. Appl Environ Microbiol 47:814–820

    PubMed  CAS  Google Scholar 

  • Kaebernick M, Neilan BA (2001) Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol Ecol 35:1–9

    Article  PubMed  CAS  Google Scholar 

  • Karaush GA (1985) Phenol resistance of mixed culture of algae. Nauchn Dokl Vyssh Shkoly Biol Nauki 8:62–65

    Google Scholar 

  • Kearns KD, Hunger MD (2001) Toxin-producing Anabaena flos-aquae induces settling of Chlaymydomonas reinhardtii, a competing motile alga. Microbial Ecol 42:80–86

    CAS  Google Scholar 

  • Keating KI (1977) Allelopathic influence ons on blue green sequence in a eutrophic lake. Science 196:885–887

    Article  PubMed  CAS  Google Scholar 

  • Keating KI (1978) Blue green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199:971–973

    Article  PubMed  CAS  Google Scholar 

  • Kogan SI, Chinnova GA (1972) Relations between Ceratophyllum demersum L. and some blue-green algae. Hydrobiol 8:14–19

    Google Scholar 

  • Kong CH, Wang P, Zhang CX, Zhang MX, Hu F (2006) Herbicidal potential of allelochemicals from Lantana camara against Eichhornia crassipes and the alga Microcystis aeruginosa. Weed Res 46:290–295

    Article  CAS  Google Scholar 

  • Korner S (2006) Allelopathic inhibition of epiphytes by submerged macrophytes. Aquat Bot 85:252–256

    Article  Google Scholar 

  • Kubanek J, Hicks MK, Naar J, Villareal T (2005) Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplanktons? Limnol Oceanog 50:883–895

    Article  Google Scholar 

  • Lafforgue MW, Szeligiewicz J, Devaux PoulinM (1995) Selective mechanisms controlling algal succession in Aydat Lake. Water Sci Technol 32:117–127

    Google Scholar 

  • Lam AKY, Prepas LEE, Spink D, Hrudey SE (1995) Chemical control of hepatotoxic phytoplankton blooms: implications for human health. Water Resour 29:1845–1854

    CAS  Google Scholar 

  • Lam CWY, Silvester WB (1979) Growth interactions among blue- green (Anabaeana oscillarioides, Microcystis aeruginosa) and green (Chlorella sp.) algae. Hydrobiol 63:207–209

    Article  Google Scholar 

  • Leao PN, Pereira AR, Liu WT (2010) Synergistic allelochemicals from a freshwater cyanobacterium. Proc Natl Acad Sci U S A 107:11183–11188

    Article  PubMed  CAS  Google Scholar 

  • Leao PN, Vasconcelos MTSD, Vasconcelos VM (2009) Allelopathy in freshwater cyanobacteria. Crit Rev Microbiol 35:271–282

    Article  PubMed  CAS  Google Scholar 

  • Leu E, Krieger-Liszkay A, Goussias C, Gross EM (2002) Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol 130:2011–2018

    Article  PubMed  CAS  Google Scholar 

  • Li FM, Hu HY (2005) Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl Environ Microbiol 71:6545–6553

    Article  PubMed  CAS  Google Scholar 

  • Lurling M, Geest G, Scheffer M (2006) Importance of nutrient competition and allelopathic effects in suppression of the green alga Scenedesmus obliquus by the macrophytes Chara, Elodea and Myriophyllum. Hydrobiol 556:209–220

    Article  CAS  Google Scholar 

  • Makisimnova IV, Pinninova MN (1969) Liberation of organic acids by green unicellular algae. Microbiol 38:64–70

    Google Scholar 

  • Mallik MAB, Williams RD (2005) Allelopathic growth stimulation of plants and microorganisms. Allelopathy J 16:175–198

    Google Scholar 

  • Mason CP, Edwards KR, Carlson RE, Pignatello J, Gleason FK, Wood JM (1982) Isolation of chlorine- containing antibiotic from the freshwater cyanobacterium Sctonema hofmanni. Science 215:400–402

    Article  PubMed  CAS  Google Scholar 

  • Megharaj M, Venkateswarlu K, Rao AS (1986) The toxicity of phenolic compounds to soil algal population and to Chlorella vulgaris and Nostoc linckia. Plant Soil 96:197–203

    Article  CAS  Google Scholar 

  • Men YJ, Hu HY, Li FM (2006) Effects of an allelopathic fraction from Phragmites communis Trin. on the growth characteristics of Scenedesmus obliquus. Ecol Environ 15:925–929

    Google Scholar 

  • Mohamed ZA (2002) Allelopathic activity of Spirogyra sp.: stimulating bloom formation and toxin production by Oscillatoria agardhii in some irrigation canals. Egypt J Plankton Res 24:137–141

    Article  CAS  Google Scholar 

  • Morais MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photo bioreactors. Biotechnol Lett 29:1349–1352

    Article  PubMed  CAS  Google Scholar 

  • Mulderij G, Mau B, De-Senerpont DomisLN, Smolders AJP, Donk EV (2008) Interactions between the macrophyte Stratiotes alloidis and filamentous algae: does it indicate allelopathy. Aquat Ecol 43:305–312

    Article  CAS  Google Scholar 

  • Mulderij G, Mau B, Van-Donk E, Gross EM (2007) Allelopathic activity of Stratiotes aloides on phytoplankton-towards identification of allelopathic substances. Hydrobiology 584:89–100

    Article  CAS  Google Scholar 

  • Mulderij G, Smolders AJP, Donk EV (2006) Allelopathic effect of the aquatic macrophyte, Stratiotes aloides, on natural phytoplankton. Freshwater Biol 51:554–561

    Article  CAS  Google Scholar 

  • Murphy IP, Lean DRS, Nalewajko C (1976) Blue green algae: their excretion of Fe selective chelators enable them to dominate other algae. Science 192:900

    Article  PubMed  CAS  Google Scholar 

  • Nakai S, Inoue Y, Hosomi M, Murakami A (1999) Growth inhibition of blue- green algae by allelopathic effects of macrophytes. Water Sci Technol 39:47–53

    Google Scholar 

  • Nakai S, Inoue Y, Hosomi M, Murakami A (2000) Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Resour 34:3026–3032

    CAS  Google Scholar 

  • Nakai S, Yamada S, Hosomi M (2005) Anti-cyanobacterial fatty acids released from Myriophyllum spicatum. Hydrobiology 543:71–78

    Article  CAS  Google Scholar 

  • Nan C, Zhang H, Lin S, Zhao G, Liu X (2008) Allelopathic effects of Ulva lactuca on selected species of harmful bloom-forming microalgae in laboratory cultures. Aquat Bot 89:9–15

    Article  Google Scholar 

  • Nelson TA, Lee A (2001) A manipulative experiment demonstrates that blooms of the macroalgae Ulvaria obscura can reduce eelgrass shoot density. Aquat Bot 71:149–154

    Article  Google Scholar 

  • Olabarria C, Rodil IF, Incera M, Troncoso JS (2008) Limited impact of Sargassum muticum on native algal assemblages from rocky intertidal shores. Mar Environ Res 67:153–158

    Article  PubMed  CAS  Google Scholar 

  • Orth RJ, Harwell MC, Bailey EM, Bartholomew A, Jawad JT, Lombana AV, Moore KA, Rhode JM, Woods HE (2000) A review of issues in seagrass seed dormancy and germination: implication for conservation and restoration. Mar Ecol Prog Ser 200:277–288

    Article  Google Scholar 

  • Peterson GML, Harris DO, Cohen WS (1979) Inhibition of photosynthesis and mitochondrial electron transport by toxic substances isolated from the alga Pandorina morum. Plant Sci Lett 15:293–300

    Article  Google Scholar 

  • Pignatello JJ, Porwoll J, Carlson RE, Xavier A, Gleason FK, Wood JM (1983) Structure of the antibiotic cyanobacterin, a chlorine-containing/-lactone from the freshwater cyanobacterium Sctonema hofmanni. J Org Chem 48:4035–4038

    Article  CAS  Google Scholar 

  • Plumly FG (1997) Marine algal toxins: biochemistry genetics, and molecular biology. Limnol Oceanogr 42:1252–1264

    Article  Google Scholar 

  • Pouvreau JB, Morançais M, Fleury F, Rosa P, Thion L, Cahingt B, Zal F, Fleurence J, Pondaven P (2006) Preliminary characterisation of the blue-green pigment “marennine” from the marine tychopelagic diatom Haslea ostrearia (Gaillon/Bory) Simonsen. J Appl Phycol 18(6):757–767

    Article  CAS  Google Scholar 

  • Pouvreau JB, Housson E, Tallec LL, Morancais M, Rince Y, Fleurence J, Pondaven P (2007) Growth inhibition of several marine diatom species induced by the shading effect and allelopathic activity of marine, a blue-green polyphenolic pigment of the diatom Haslea ostrearia (Gaillon/Bory) Simonsen. J Exp Mar Biol Ecol 352:212–225

    Article  CAS  Google Scholar 

  • Prince EK, Myers TL, Kubanek J (2008) Effects of harmful algal blooms on competitors: allelopathic mechanisms of the red tide dinoflagellate Karenia brevis. Limnol Oceanogr 53:531–541

    Article  Google Scholar 

  • Prince EK, Poulson KL, Myers TL, Sieg RD, Kubanek J (2010) Characterization of allelopathic compounds from the red tide dinoflagellate Karenia brevis. Harmful Algae 10:39–48

    Article  CAS  Google Scholar 

  • Proctor VW (1957) Some controlling factors in the distribution of Haematococcus pluvialis. Ecology 38:457–462

    Article  Google Scholar 

  • Rasher DB, Stout EP, Engel S, Kubanek J, Hay ME (2011) Macroalgal terpenes function as allelopathic agents against reef corals. Proc Nat Acad Sci U S A 108:17726–17731

    Article  CAS  Google Scholar 

  • Rashid H, Khan MA, Amin A, Nawab K, Hussain N, Bhowmik PK (2008) Effect of Parthenium hysterophorus L. root extracts on seed germination and growth of maize and barley. Amer J Plant Sci Biotechnol 2:51–55

    Google Scholar 

  • Regina GB, Reinhardtb CF, Foxcroftc LC, Hurlea K (2007) Residue allelopathy in Parthenium hysterophorus L.-Does parthenin plays a leading role? Crop Prot 26:237–245

    Article  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, London

    Google Scholar 

  • Rice EL, Lin CY, Huang CY (1981) Effect of decaying rice straw on growth and nitrogen fixation of a blue green alga. Bot Bull Acad Sci 21:111-117

    Google Scholar 

  • Ridge I, Walters J, Street M (1999) Algal growth control by terrestrial leaf litter: a realistic tool? Hydrobiology 395:173–180

    Article  Google Scholar 

  • Rogan MA, Craigie JS (1978) Phenolic compounds in brown and red algae. In: Hellebust JA, Craige JS (eds) Handbook of physiological methods; Physiological and biochemical methods. Cambridge University Press, London, pp 157–179

    Google Scholar 

  • Sharma KP (1985) Allelopathic influence of algae on growth of Eichhornia crassipes. Aquat Bot 22:71–78

    Article  Google Scholar 

  • Sieburth JM (1968) The influence of algal antibiosis on the ecology of marine microorganisms. In: Droop MR, Ferguson-Wood EJ (eds) Advances in microbiology of sea. Academic Press, London, pp 63–940

    Google Scholar 

  • Singh RN (1961) The role of blue-green algae in nitrogen economy of indian agriculture. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Skulberg OM (2000) Microalgae as a source of bioactive molecules- experience from cyanophyte research. J Appl Phycol 12:341–348

    Article  CAS  Google Scholar 

  • Smayda TJ (1997) Harmful algal blooms: their ecophysiology and general relevance of phytoplankton blooms in the sea. Limol Oceangr 42:1137–1153

    Article  Google Scholar 

  • Smith GD, Doan NT (1999) Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J Appl Phycol 11:337–344

    Article  CAS  Google Scholar 

  • Stevens KL, Merril GB (1980) Growth inhibitors from spikerush. J Agric Food Chem 28:644–646

    Article  CAS  Google Scholar 

  • Stevenson FJ (1967) Organic acids in soil. In: Metaren AD, Paterson GH (eds) Soil biochemistry. Dekkar, New York pp 119–142

    Google Scholar 

  • Suikkanen S, Fistarol GO, Granéli E (2004) Allelopathic effects of the baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308:85–101

    Article  Google Scholar 

  • Sukenik A, Eshkol R, Livne A, Hadas O, Rom M, Tchernov D, Vardi A, Kaplan A (2002) Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47:1656–1663

    Article  Google Scholar 

  • Sun WH, Yu ZW, Yu SW (1988) Inhibitory effect of Eichhornia crassipes (Mart.) solms on algae. Acta Phytophysiol Sin 14:294–300

    Google Scholar 

  • Sutfeld R (1998) Polymerization of resorcinol by a cryptophycean exoenzyme. Phytochem 49:451–459

    Article  CAS  Google Scholar 

  • Sutton DL, Portier KM (1989) Influence of allelochemicals and aqueous plant extracts on growth of duckweed. Aquat Plant Manag 27:90–95

    Google Scholar 

  • Sutton DL, Portier KM (1991) Influence of spikerush plants on growth and nutrient content of hydrilla. Aquat Plant Manag 29:6–11

    Google Scholar 

  • Suzuki Y, Takabayashi T, Kawaguchi T, Matsunuga K (1998) Isolation of an allelopathic substance forms the crustose coralline alga, Lithophyllum spp., and its effect on the brown alga Laminaria religiosa Miyabe (Phaeophyta). J Exp Mar Biol Ecol 225:69–77

    Article  CAS  Google Scholar 

  • Tang CS, Waiss AC (1978) Short chain fatty acids as growth inhibitor in decomposing wheat straw. J Chem Ecol 4:225–232

    Article  CAS  Google Scholar 

  • Tang P, Wu GR, Lu CM, Zou CF, Wei JC (2000) Effects of the excretion from root system of Eichhornia crassipes on the cell structure and metabolism of Scenedesmus arcuatus. Acta Sci Circum 20:355–359

    CAS  Google Scholar 

  • Van-Aller RT, Pessoney GF, Rogers VA, Watkins EJ, Leggett HG (1985) Oxygenated fatty acids: a class of allelochemicals from aquatic plants. ACS Sym Series 268:387–400

    Article  CAS  Google Scholar 

  • Van-Donk E, Van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72:261–274

    Article  Google Scholar 

  • Van-Vierssen W, Prins TC (1985) On the relationship between the growth of algae and aquatic macrophytes in brackish water. Aquat Bot 21:165–179

    Article  Google Scholar 

  • Vardi A, Schatz D, Beeri K, Motro U, Sukenik A, Levine A, Kaplan A (2002) Dinoflagellates-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr Biol 12:1767–1772

    Article  PubMed  CAS  Google Scholar 

  • Verschuren D, Johnson TC, Kling HJ, Edgington DN, Leavitt PR, Brown ET, Talbot MR, Hecky RE (2002) History and timing of human impact on Lake Victoria, East Africa. Proc R Soc B 269:289–294

    Article  PubMed  Google Scholar 

  • Wang H, Zhang Y (2000) Growth inhibition of cyanobacteria by decomposed rice straw. Acta Sci Nat Univ Pekin 36:485–488

    Google Scholar 

  • Weaks T (1988) Allelopathic interference as a factor influencing the periphyton community of a freshwater marsh. Arch Hydrobiol 111:369–382

    Google Scholar 

  • Weissbach A, Tillmann U, Legrand C (2010) Allelopathic potential of the dinoflagellate Alexandrium tamarense on marine microbial communities. Harmful Algae 10:9–18

    Article  Google Scholar 

  • Wetzel RG (1969) Factors influencing photosynthesis and excretion of dissolved organic matter macrophytes in hard water lakes. Verh Internat Verein Limnol 17:72–85

    Google Scholar 

  • Whittaker RH (1970) The biochemical ecology of higher plants. In: Soudheimer E, Simeone JB (eds) Chemical ecology. Academic Press Inc., New York, pp 43–70

    Google Scholar 

  • Windust AJ, Wright JLC, McLachlan JL (1996) The effects of the diarrhetic shellfish poisoning toxins, okadaic acid and dinophysistoxin—1, on the growth of microalgae. Mar Biol 126:19–25

    Article  CAS  Google Scholar 

  • Wolfe MJ, Rice EL (1979) Allelopathic interactions among algae. J Chem Ecol 5

    Google Scholar 

  • Xian QM, Chen HD, Liu HL, Zou HX, Yin DQ (2006) Isolation and identification of antialgal compounds from the leaves of Vallisneria spiralis L. by activity-guided fractionation. Environ Sci Pollut Res 13:233–237

    Article  CAS  Google Scholar 

  • Yang SY, Sun WH (1992) Isolation and identification of antialgal compounds from root system of water hyacinth. Acta Photophysiol Sin 18:399–402

    CAS  Google Scholar 

  • Yu SW, Sun WH, Yu ZW (1991) Detection of antialgal compounds of water hyacinth. In: Bioindicators and environmental management, Academic Press, London, p 255–262

    Google Scholar 

  • Yu ZW, Sun WH, Guo KQ, Yu SW (1992) Allelopathic effects of several aquatic plants on algae. Acta Hydrobiol Sin 16:1–7

    Google Scholar 

  • Zhang TT, He M, Wu AP, Nie LW (2009) Allelopathic effects of submerged macrophyte Chara vulgaris on toxic Microcystis aeruginosa. Allelopathy J 23:391–402

    CAS  Google Scholar 

  • Zhang TT, Zheng CY, Hu W, Xu WW, Wang HF (2010) The allelopathy and allelopathic mechanism of phenolic acids on toxic Microcystis aeruginosa. J Appl Phycol 22:71–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ahluwalia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahluwalia, A.S. (2013). Cyanobacterial and Algal Allelopathy. In: Cheema, Z., Farooq, M., Wahid, A. (eds) Allelopathy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30595-5_21

Download citation

Publish with us

Policies and ethics