Skip to main content

Breeding for Water Use Efficiency

  • Chapter
  • First Online:
Plant Breeding for Abiotic Stress Tolerance

Abstract

Among environmental factors, drought is the principal factor that limits global agricultural production. Many global agricultural regions are already suffering serious problems with water shortage and this scenario suggests that greater efforts are required in the development of alternatives for sustainable agriculture, such as the selection of cultivars that are efficient in the use of water. Water use efficiency (WUE) is the most important component of drought adaptation. In this chapter, WUE will be emphasized because of its greater importance and the possibility of obtaining genotypes that respond to environmental improvement or to the availability of water when it occurs. For this purpose the following topics will be addressed: germplasm, genetic variability, relationship between characteristics, inheritance and maternal effect, oxidative stress, stress induction, selection strategies and breeding methods, and biotechnology applied to the breeding of WUE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amudha J, Balasubramani G (2011) Recent molecular advances to combat abiotic stress tolerance in crop plants. Biotechnol Mol Biol Rev 6:31–58

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: Recent advances. Biotechnol Adv 28:169–183

    Article  PubMed  CAS  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238

    Article  PubMed  CAS  Google Scholar 

  • Bänziger M, Edmeades GO, Beck D, Bellon M (2000) for drought and nitrogen stress tolerance in maize. CIMMYT Special Publication. CIMMYT, Mexico, p 68

    Google Scholar 

  • Bänziger M, Setimela PS, Hodson D, Vivek B (2006) Breeding for improved drought tolerance in maize adapted to southern Africa. Agric Water Manag 80:212–224

    Article  Google Scholar 

  • Bastos EA, Nascimento SP, Silva EM, Freire Filho FR, Lúcio Gomide RL (2011) Identification of cowpea genotypes for drought tolerance. 2011. Revista Ciência Agronômica 42:100–107

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bernardo R (2002) Breeding for quantitative traits in plants. Stemma Press, Woodbury, p 369

    Google Scholar 

  • Bolaños J, Edmeades GO (1993) Eight cycles of selection for drought tolerance in lowland tropical maize. I. Responses in grain yield, biomass, and radiation utilization. Field Crops Res 31:233–252

    Article  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Brendel O, Thiec DL, Scotti-Saintagne C, Bodenes C, Kremer A, Guehl J (2008) Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L. Tree Genet Genomes 4:263–278

    Article  Google Scholar 

  • Cha-Um S, Nhung NTH, Kirdmanee C (2010) Effect of mannitol- and salt-induced iso-osmotic stress on proline accumulation, photosynthetic abilities and growth characters of rice cultivars (Oryza sativa L. spp. Indica). Pak J Bot 42:927–941

    CAS  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  PubMed  CAS  Google Scholar 

  • Derera J, Tongoona P, Vivek BS, Laing AD (2008) Gene action controlling grain yield and secondary traits in southern African maize hybrids under drought and non-drought environments. Euphytica 162:411–422

    Article  Google Scholar 

  • Eathington S (2005) Practical applications of molecular technology in the development of commercial maize hybrids. In: Proceedings of the 60th Annual Corn and Sorghum Seed Research Conferences. Washington, DC: American Seed Trade Association

    Google Scholar 

  • El-Bashiti T, Seyin H, Ktem AO, Yü Cel M (2005). Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. Plant Science 169:47-54

    Google Scholar 

  • FAO (2007) Current World Fertilizer Trends and Outlook to 2011/12. Food and Agriculture Organization of the United Nations, 2007

    Google Scholar 

  • Farhad MS, Babak AM, Reza ZM, Hassan RSM, Afshin T (2011) Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Aust J Crop Siencie 5:55–60

    CAS  Google Scholar 

  • Gilbert ME, Zwieniecki MA, Holbrook NM (2011) Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought. J Exp Bot 62:1–13

    Article  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Ann Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • Hoerling M, Kumar A (2003) The perfect ocean for drought. Science 299:691–694

    Article  PubMed  CAS  Google Scholar 

  • Hund A, Ruta, N, Liedgens M (2009). Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant Soil 318–311–325

    Google Scholar 

  • Huseynova IM, Suleymanov SY, Rustamova SM (2010) Response of photosynthetic apparatus and antioxidant defense systems in Triticum aestivum L. genotypes subjected to drought stress. Proceedings of ANAIS. (Biological Sciences) 65:49–59

    Google Scholar 

  • Jones HJ (1993) Drought tolerance and water-use efficiency. In: Smith JAC, Griffiths H (eds) Water deficits, plant response from cell to community. BIOS Scientific Publishers, Oxford, pp 193–203

    Google Scholar 

  • Lal CL, Hariprasanna K, Rathnakumar AL, Gor HK, Chikani BM (2006) Gene action for surrogate traits of water-use efficiency and harvest index in peanut (Arachis hypogaea). Ann Appl Biol 148:165–172

    Article  Google Scholar 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Anderson MN, Jacobson SE, Jensen CR (2005) Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environ Exp Bot 54:33–40

    Article  CAS  Google Scholar 

  • Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH (2005) Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot 56:417–423

    Article  PubMed  CAS  Google Scholar 

  • Machado RS, Ribeiro RV, Marchiori PER, Machado DFSP, Machado EC, Landell MGA (2009) Respostas biométricas e fisiológicas ao deficit hídrico em cana-de-açúcar em diferentes fases fenológicas. Pesquisa Agropecuária Brasileira 44:1575–1582

    Article  Google Scholar 

  • Magalhães PC, Souza TC, Albuquerque PEP, Karam D, Magalhães MM, Cantão FRO (2009) Caracterização ecofisiológica de linhagens de milho submetidas a baixa disponibilidade hídrica durante o florescimento. Revista Brasileira de Milho e Sorgo 8:223–232

    Google Scholar 

  • Manavalan LP, Guttikonda SK, Tran LSP, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a pratical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, Campos MKF, Carvalho JFRP, Bespalhok Filho JC, Pereira LFPP, Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229

    Article  CAS  Google Scholar 

  • Monneveux H, Rekika D, Acevedo E, Othmane Merah O (2006) Effect of drought on leaf gas exchange, carbon isotope discrimination, transpiration efficiency and productivity in field grown durum wheat genotypes. Plant Sci 170:867–872

    Article  CAS  Google Scholar 

  • Nepomuceno A L, Fuganti R, Rodrigues FA, Neumaier N, Farias JRB, Kanamori N, Marcelino C (2009) Estratégias moleculares para tolerância a seca em plantas. In: Lacerda CF, Gomes Filho E, Bezerra MA, Marques EC (orgs.). A fisiologia vegetal e os desafios para produção de alimentos e bioenergia. Fortaleza: UFC/EMBRAPA-CNPAT.

    Google Scholar 

  • Noctor G, Foyer CH (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  Google Scholar 

  • Omidi H (2010) Changes of proline content and activity of antioxidative enzymes in two canola genotype under drought stress. American Journal of Plant Physiology 5:338–349

    Article  CAS  Google Scholar 

  • Paknejad F, Nasri M, Moghadam HRT, Zahedi H, Alahmadi MJ (2007) Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. International Journal of Biological Science 7:841–847

    CAS  Google Scholar 

  • Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, González-de-Leon D (1996) Identification of quantitative trait loci under drought conditions in tropical maize. I. Flowering parameters and the anthesis-silking interval. Theoretical and Applied Genetics 92:905–914

    Article  CAS  Google Scholar 

  • Ribaut JM, Hoisington D, Edmeades GO, Huerta E, González-de-León D (1997) Changes in allelic frequencies in a tropical maize population under selection for drought tolerance. In: Edmeades GO, Bänziger M, Mickelson HR, Peña-Valdivia CB. (eds.). Developing Drought and Low N-Tolerant Maize. Proceedings of a Symposium, March 25-29, 1996, CIMMYT, El Batán, México. D.F.: CIMMYT. pp 392–395

    Google Scholar 

  • Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations and alternatives. J Exp Bot 58:351–360

    Article  PubMed  CAS  Google Scholar 

  • Roy B, Noren SK, Mandal AB, Basu AK (2011) Genetic engineering for abiotic stress tolerance in agricultural crops. Biotechnology 10:1–22

    Article  CAS  Google Scholar 

  • Silva MA, Jifon JL, Silva JAG, Sharma V (2007) Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz J Plant Physiol 19:193–201

    Article  Google Scholar 

  • Songsri P, Jogloy S, Holbrook CC, Kesmala T, Vorasoot N, Akkasaeng C, Patanothai A (2009) Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water. Agric Water Manag 96:790–798

    Article  Google Scholar 

  • Soren KR, Kishwar A, Vandana T, Aruna T (2010) Recent advances in molecular breeding of drought tolerance in rice (Oryza sativa L.). Ind J Biotech 9:233–251

    CAS  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science’s Compass Rev 292:281–284

    CAS  Google Scholar 

  • Varshney RK, Pazhamala L, Kashiwagi J, Gaur PM, Krishnamurthy L, Hoisington D (2011) Genomics and physiological approaches for root trait breeding to improve drought tolerance in chickpea (Cicer arietinum L.). Root Genomics 10:213–222

    Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:1–7

    Article  Google Scholar 

  • Vendruscolo ACG, Schuster I, Pileggi M, Scarpim CA, Molinari HBC, Marur CJ, Vieira LGC (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Li Z, Eneji AE, Tian X, Zhai Z, Li J, Duan L (2008) Effects of coronatine on growth, gas exchange traits, chlorophyll content, antioxidant enzymes and lipid peroxidation in maize (Zea mays L.) seedlings under simulated drought stress. Plant Prod Sci 11:283–290

    Article  Google Scholar 

  • Winter K, Aranda J, Garcia M, Virgo A, Paton SR (2001) Effect of elevated CO2 and soil fertilization on whole-plant growth and water use in seedlings of a tropical pioneer tree, Ficus insipida Willd. Flora 196:458–464

    Google Scholar 

  • Xoconostle-Cazares B, Ramirez-Ortega FA, Flores-Elenes L, Ruiz-Medrano R (2010) Drought tolerance in crop plants. Amer J Plant Physiol 5:241–256

    Article  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  Google Scholar 

  • Zhao J, Sun H, Dai H, Zhang G, Wu F (2010) Difference in response to drought stress among Tibet wild barley genotypes. Euphytica 172:395–403

    Article  CAS  Google Scholar 

  • Zhou Q, Yu B (2010) Changes in content of free, conjugated and bound polyamines and osmotic adjustment in adaptation of vetiver grass to water deficit. Plant Physiol Biochem 48:417–425

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Yu K, Zhang Z, Jiang W, Liu D (2009) Antioxidant response system and chlorophyll fluorescence in chromium (vi) treated Zea mays L. seedlings. Acta Biologica Cracoviensia—Series Botanica 51:23–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo de Almeida Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Almeida Silva, M. et al. (2012). Breeding for Water Use Efficiency. In: Fritsche-Neto, R., Borém, A. (eds) Plant Breeding for Abiotic Stress Tolerance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30553-5_6

Download citation

Publish with us

Policies and ethics