Skip to main content

Breeding for Phosphorus Use Efficiency

  • Chapter
  • First Online:
Plant Breeding for Abiotic Stress Tolerance

Abstract

Low phosphorus availability is one of the major agricultural limitations in tropical soils. Phosphorus deficiency causes a series of effects in plants such as changes in root and shoot morphology, in plant physiology and in plant internal transport. Phosphorus deficiency also affects the use of other nutrients, resulting in reduction of crop yield potential. Among the macronutrients, phosphorus has the lowest use efficiency in plants. This low efficiency is related to the ability of soils to adsorb the applied P, making it unavailable to the crop. Phosphorus efficiency has been defined as the processes by which plants acquire, translocate, accumulate, and utilize this nutrient to better produce dry matter and/or grain under conditions of high and low supply. Nutrient use efficiency has been defined as grams of grain produced per gram of nutrient supplied to the crop. This index can be decomposed into two main components: acquisition efficiency, and internal utilization efficiency. Phosphorus acquisition efficiency has been found to be two to three times more important than phosphorus internal utilization efficiency in tropical soils. Breeding programs for phosphorus use efficiency should take into account a number of issues such as: use of appropriate screening sites, germplasm sources, experimental conditions, intensity of stress imposition, selection criteria, genetic information and evaluation methods. A general discussion of these topics are covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahsan M, Wright D, Virk DS (1996) Genetic analysis of salt tolerance in spring wheat (Triticum aestivum L.). Cereal Res Commun 24:353–360

    Google Scholar 

  • Anghinoni, I. (2006). Phosphorus forms and availability in Brazilian tropical and subtropical soils under management systems. In: Proceedings of 3rd International Symposium on Phosphorus Dynamics in soil-Plant Continuum, Uberlândia, Sete Lagoas: Embrapa Milho e Sorgo, pp 13–14

    Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32(1–8):921–950

    Article  CAS  Google Scholar 

  • Barriga BP, Proschle AA (1996) Herencia del contenido y de la eficiencia de la utilizacion del fosforo en trigo. Agro sur 12(1):43–49

    Google Scholar 

  • Batten GD, Khan MA, Cullis BR (1984) Yield responses by modern wheat genotypes to phosphate fertilizer and their implications for breeding. Euphytica 33:81–89

    Article  Google Scholar 

  • Bolanos J, Edmeades GO (1993) Eight cycles of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior. Field Crops Res 31:253–268

    Article  Google Scholar 

  • Borlaug N (2000). The green revolution revisited and the road ahead. The Norwegian Nobel Institute, Oslo (special 30th anniversary lecture)

    Google Scholar 

  • Chaubey CN, Senadhira D, Gregorio GB (1994) Genetic analysis of tolerance for phosphorous deficiency in rice (Oryza sativa L.). Theor Appl Genet 89(2–3):313–317

    Google Scholar 

  • Chen J, Xu L, Cai Y, Xu J (2009) Identification of QTLs for phosphorus utilization efficiency in maize (Zea mays L.) across P levels. Euphytica 167(2):245–252

    Article  CAS  Google Scholar 

  • Cicarelli DM, Furlani AMC, Dechen AR, Lima M (1998) Genetic variation among maize genotypes for phosphorus-uptake and phosphorus-use efficiency in nutrient solution. J Plant Nutr 21:2219–2229

    Article  Google Scholar 

  • Dalal RC (1977) Soil organic phosphorus. Adv Agron 29:83–117

    Article  CAS  Google Scholar 

  • Dechen, AR, Nachtigall, RG (2007) Elementos requeridos à nutrição de plantas. In: Novais RF,Alvarez VVH, Barros NF, De Fontes , Cantarutti, RLF RB, Neves JCL (eds) Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, pp 91–132

    Google Scholar 

  • Fageria NK, Baligar VC (1993) Screening crop genotypes for mineral stresses. In: Proceedings of theworkshop on adaption of plants to soil stresses, University of Nebrasca, Lincoln, pp 142–162 (INTSORMIL Publications, 94-2)

    Google Scholar 

  • FAO (2010) How to feed the world in 2050. Roma, Disponível em. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf. Acesso em: 17 Mar 2011

  • Furlani AMC, Lima M, Nass LL (1998) Combining ability effects for P- efficiency characters in maize grown in low P nutrient solution. Maydica 43:169–174

    Google Scholar 

  • Furtini IV (2008) Implicações da seleção no feijoeiro efetuada em ambientes contrastantes em níveis de nitrogênio. Dissertação de Mestrado em Genética e Melhoramento de Plantas, Universidade Federal de Lavras, Lavras, p 67

    Google Scholar 

  • Gorz HJ, Haskins FA, Pedersen JF, Ross WM (1987) Combining ability effects for mineral elements in forage sorghum hybrids. Crop Sci 27:216–219

    Article  CAS  Google Scholar 

  • Hisinger P, Jailard B, Le Cadre-Bartgélémy E, Plassard C., Drevon JJ (2006) The roots of phosphorus acquisition efficiency in crops In: Proceedings of the international symposium on phosphorus dynamics in the soil–plant continuum, 3., 2006, Sete Lagoas, Embrapa Milho e Sorgo, pp 75–76

    Google Scholar 

  • Hyland C, Ketterings Q, Dewing D, Stockin K, Czymmek K, Albrecht G, Geohring L (2005) Phosphorus basics: the phosphorus cycle, Cornell University, Cornell (Agronomy Fact Sheet, 12). Disponível em. http://nmsp.cals.cornell.edu/publications/factsheets/factsheet12.pdf. Acesso em: 16 Mar 2011

  • Loughman BC, Roberts SC, Goodwin-Bailey CI (1983) Varietal differences in physiological and biochemical responses to changes in the ionic environment. Plant Soil 72:245–259

    Article  CAS  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Article  Google Scholar 

  • Murrel TS, Fixen PE (2006) Improving fertilizer P effectiveness: challenges for the future. In: Proceedings of the international symposium on phosphorus dynamics in the soil-plant continuum, 3., 2006, Embrapa Milho e Sorgo, Sete Lagoas, pp 150–151

    Google Scholar 

  • Ni JJ, Wu P, Senadhira D, Huang N (1998) Mapping QTLs for phosphorus deficiency tolerance in rice (Oriva sativa L.). Theor Appl Genet 97:1361–1369

    Article  CAS  Google Scholar 

  • Novais RF, Smyth TJ (1999) Fósforo em solo e planta em condições tropicais. UFV, Viçosa, p 399

    Google Scholar 

  • Ochoa IE, Blair MW, Lynch JP (2006) QTL analysis for adventitious root formation in common bean under contrasting phosphorus availability. Crop Sci 46:1609–1621

    Article  CAS  Google Scholar 

  • Parentoni SN (2008) Estimativas de efeitos gênicos de diversos caracteres relacionados à eficiência e resposta ao fósforo em milho tropical. Tese (Doutorado)—Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, p 207

    Google Scholar 

  • Parentoni SN, Alves VMC, Milach SK, Cançado GMA, Bahia Filho AFC (2001) Melhoramento para tolerância ao alumínio como fator de adaptação a solos ácidos. In: Nass LL, Valois ACC, Melo IS, de Valadares-Inglis MC (eds) Recursos genéticos e melhoramento-plantas. Fundação MT, Rondonópolis, pp 783–851

    Google Scholar 

  • Parentoni SN, De Souza Júnior CL, Alves VMC, Gama EEGE, Coelho AM, de Oliveira AC, Guimaraes CT, de Vasconcelos MJV, Pacheco CAP, Meirelles WF, De Magalhaes JV, Guimaraes LJM, da Silva AR, Mendes FF, Schaffert RE (2010) Inheritance and breeding strategies for phosphorus efficiency in tropical maize (Zea mays L.). Maydica 55(1):1–15

    Google Scholar 

  • Parentoni SN, Souza Júnior CL (2008) Phosphorus acquisition and internal utilization efficiency in tropical maize genotypes. Pesquisa Agropecuária Brasileira 43(7):893–901

    Article  Google Scholar 

  • Parentoni SN, Vasconcelos CA, Alves VMC, Pacheco CAP, Santos MX, Gama EEG, Meirelles WF, Correa LA, Pitta GVE, Bahia Filho AFC (2000) Eficiência na utilização de fósforo em genótipos de milho. In: Congresso Nacional de Milho e Sorgo, 23., 2000, Uberlândia. A inovação tecnológica e a competividade no contexto dos mercados globalizados: resumos. Sete Lagoas: ABMS: Embrapa Milho e Sorgo; Uberlândia: Universidade Federal de Uberlândia, p 92

    Google Scholar 

  • de Resende MDV (2007) Matemática e estatística na análise de experimentos e no melhoramento genético. Embrapa Florestas, Colombo, p 362

    Google Scholar 

  • Su J, Li H, Li B, Jing R, Tong Y, Li Z (2009) Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci 176:824–836

    Article  CAS  Google Scholar 

  • Viana JHM, Resende ÁV, Guimarães CT, Parentoni SN (2009) Avaliação da variabilidade espacial do solo em experimentos de eficiência nutricional em milho, conduzidos em área com baixos teores de nutrientes: um estudo de caso. Sete Lagoas: Embrapa Milho e Sorgo, p 19. (Embrapa Milho e Sorgo. Boletim de Pesquisa e Desenvolvimento, 18)

    Google Scholar 

  • Viana JH, Gomide RL, Albuquerque PEP, Durães, FOM, Andrade CDLT (2007) Protocolos para estabelecimento e caracterização de sítio específico experimental. Sete Lagoas: Embrapa Milho e Sorgo. p 6 (Embrapa Milho e Sorgo. Circular Técnica, 95)

    Google Scholar 

  • Wang X, Shen J, Liao H (2010) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops. Plant Sci 179:302–306

    Article  CAS  Google Scholar 

  • Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897

    Article  PubMed  CAS  Google Scholar 

  • Wissuwa M, Yano M, Ae N (1998) Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oriva sativa L.). Theor Appl Genet 97:777–783

    Article  CAS  Google Scholar 

  • Zhang D, Cheng H, Geng L, Kan G, Cui S, Meng Q, Gai J, Yu D (2009) Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 167(3):313–322

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney Netto Parentoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parentoni, S.N., Mendes, F.F., Guimarães, L.J.M. (2012). Breeding for Phosphorus Use Efficiency. In: Fritsche-Neto, R., Borém, A. (eds) Plant Breeding for Abiotic Stress Tolerance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30553-5_5

Download citation

Publish with us

Policies and ethics