Skip to main content

Breeding Perennial Species for Abiotic Stress

  • Chapter
  • First Online:
Plant Breeding for Abiotic Stress Tolerance

Abstract

In agriculture, the term “stress” is understood to mean any factor, whether biotic or abiotic, that is detrimental to the growth and productivity of plants. Managing stress caused by climatic events, especially in large perennial species occupying extensive cropping areas, is in most cases neither technically nor economically viable. In this chapter we will approach the breeding of perennial species tolerant to abiotic stress based on studies of Eucalyptus under water deficiency conditions, the most common stress factor in areas used for cultivating this genus in Brazil. The forestry breeding programs conducted in Brazil have been primarily directed toward growth traits, and more recently, wood quality. Indirectly, there has been selection, albeit unintentional, for adaptation to the environmental conditions under which commercial companies operate, and it can be assumed that drought-tolerance characteristics have not been fully explored in these programs. As new forest frontiers have opened up in regions with limited water resources, the search for productive and therefore drought-tolerant genotypes should be a key feature in breeding programs. Since the species concerned are perennials with a long life cycle, during their development the plants pass through innumerable situations that are unfavorable to growth. In contrast to short-cycle species, trees cannot avoid these conditions. This means that the mechanisms for withstanding abiotic stress factors in perennial species may be more complex and primarily aimed at species survival, to the detriment of productivity. Understanding these mechanisms is essential for success of a forest breeding program for regions subject to drought.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraf−Associação Brasileira de Produtores de Florestas Plantadas (2010) Anuário estatístico da ABRAF 2010 ano base 2009. http://www.abraflor.org.br/estatisticas/ABRAF10-BR.pdf. Acessed 06 April 2011

  • Assis TF, Mafia RG (2007) Hibridação e clonagem. In: Borém A (ed) Biotecnologia florestal. Suprema Gráfica e Editora Ltda, Viçosa

    Google Scholar 

  • Barros NF, Novais RF, Cardoso JR, Macedo PRO (1990) Algumas relações solo-espécies de eucalipto em suas condições naturais. In: Barros NF, Novais RF (eds) Relação solo-eucalipto. Editora Folha de Viçosa, Viçosa

    Google Scholar 

  • Bohnert HJ, Sheveleva E (1998) Plant stress adaptations−metabolism move. Curr Opin Plant Biol 1:267–274. doi:10.1016/S1369-5266(98)80115

    Article  PubMed  CAS  Google Scholar 

  • Boland DJ, Brooker MIH, Chippendale GM, Hall N, Hyland BPM, Johnson RD, Kleining DA, McDonald MW, Turner JD (2006) Forest trees of Australia, 5th edn. Collingwood VIC, CSIRO Publising

    Google Scholar 

  • Brooker MHI, Kleining DA (2004) Field guide to eucalypts, 2nd edn., vol 3. Boomings books, Melbourne

    Google Scholar 

  • Brooker MHI, Kleining DA (2006) Field guide to eucalypts, 3rd edn., vol 1. Boomings books, Melbourne

    Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought−from genes to the whole plant. Funct Plant Biol 30:239–264. doi:10.1071/FP02076 (http://www.publish.csiro.au/nid/102/paper/FP02076.htm)

  • Eldridge K, Davidson J, Harwood C, van Wyk G (1993) Eucalypt domestication and breeding. Clarendon, Oxford

    Google Scholar 

  • Fonseca SM, Resende MDV, Alfenas AC, Guimarães LMS, Assis TF, Grattapaglia D (2010) Manual prático de melhoramento genético do eucalipto. UFV, Viçosa

    Google Scholar 

  • Grattapaglia D (2007) Mapas genéticos e seleção assistida por marcadores moleculares. In: Borém A (ed) Biotecnologia florestal. Suprema Gráfica e Editora Ltda, Viçosa

    Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Merchant A, Callister A, Arndt S, Tausz M, Adams M (2007) Contrasting physiological responses of six Eucalyptus species to water deficit. Ann Bot 100:1507–1515. doi:10.1093/aob/mcm234

    Article  PubMed  Google Scholar 

  • Moroni MT, Worledge D, Beadle CL (2003) Root distribution of Eucalyptus nitens and E. globulus in irrigated and droughted soil. For Ecol Manage 177:399–407. doi:10.1016/S0378-1127(02)00410-3

    Article  Google Scholar 

  • Ngugi MR, Doley D, Hunt MA, Ryan P, Dart P (2004) Physiological responses to water stress in Eucalyptus cloeziana and E. argophloia seedlings. Trees 18:381–389. doi:10.1007/s00468-003-0316-5

    Article  Google Scholar 

  • Ngugi MR, Hunt MA, Doley D, Ryan P, Dart P (2003a) Dry matter production and allocation in Eucalyptus cloeziana and Eucalyptus argophloia seedlings in response to soil water deficits. New Forest 26:187–200. doi:10.1023/A:1024493917483

    Article  Google Scholar 

  • Ngugi MR, Hunt MA, Doley D, Ryan P, Dart P (2003b) Effects of soil water availability on water use efficiency of Eucalyptus cloeziana and Eucalyptus argophloia plants. Aust J Bot 51:159–166. doi:10.1071/BT02103

    Article  Google Scholar 

  • Pita P, Cañas I, Soria F, Ruiz F, Toval G (2005) Use of physiological traits in tree breeding for improved yield in drought-prone environments. The case of Eucalyptus globulus. Invest Agr: Sist Recur For 14:383–393

    Google Scholar 

  • Reis GG, Reis MGF, Fontan ICI, Monte MA, Gomes NA, Oliveira CHR (2006) Crescimento de raízes e da parte aérea de clones de híbridos de Eucalyptus grandis x Eucalyptus urophylla e de Eucalyptus camaldulensis x Eucalyptus spp. submetidos a dois regimes de irrigação no campo. Revista Árvore 30(6):921–931. doi:10.1590/S0100-67622006000600007

  • Resende MDV, Higa AR (1990) Estratégias de melhoramento para eucaliptos visando a seleção de híbridos. Bol Pesq Fl 21:49–60

    Google Scholar 

  • Revolti PM (2010) Divergência genética entre clones de eucalipto por caracteres biométricos e fisiológicos sob deficiência hídrica. Jaboticabal: FCAV/UNESP, 2010. p 66 (Master Thesis)

    Google Scholar 

  • Stape JL, Binkley D, Ryan MG, Fonseca S, Loos RA, Takahashi EM, Silva CR, Silva SR, Hakamada RE, Ferreira JMA, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC, Azevedo MR (2010) The Brazil Eucalyptus potential productivity project: influence of water, nutrients and stand uniformity on wood production. For Ecol Manage 259:1684–1694. doi:10.1016/j.foreco.2010.01.012

    Article  Google Scholar 

  • Taiz L, Zeiger E (2004) Fisiologia vegetal, 3rd edn. Artmed, Porto Alegre

    Google Scholar 

  • Tatagiba SD, Pezzopane JEM, Reis EF (2008) Relações hídricas e trocas gasosas na seleção precoce de clones de eucalipto para ambientes com diferenciada disponibilidade de água no solo. Floresta 38(2):387–400

    Google Scholar 

  • Vellini ALTT, Paula NF, Alves PLCA, Pavani LC, Bonine CAV, Scarpinati EA, Paula RC (2008) Respostas fisiológicas de diferentes clones de eucalipto sob diferentes regimes de irrigação. Revista Árvore 32(4):651–663. doi:10.1590/S0100-67622008000400006

    Article  Google Scholar 

  • White DA, Turner NC, Galbraith JH (2000) Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiol 20:1157–1165. doi:10.1093/treephys/20.17.1157

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinaldo Cesar de Paula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Paula, R.C., de Paula, N.F., Marino, C.L. (2012). Breeding Perennial Species for Abiotic Stress. In: Fritsche-Neto, R., Borém, A. (eds) Plant Breeding for Abiotic Stress Tolerance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30553-5_10

Download citation

Publish with us

Policies and ethics