Skip to main content

Part of the book series: Springer Theses ((Springer Theses,volume 8))

  • 1000 Accesses

Abstract

In this first demonstration of this DEMS instrument research application, the study of the methanol oxidation reaction (MOR) on HSAC supported -Pt and -PtRu catalysts is revisited. The objective of this study was to not only demonstrate the research capabilities of the DEMS instrument constructed in this thesis but to also examine the electroanalytical techniques that are commonly employed in order to study and assess the MOR reaction and electrocatalyst activities using RDE. The results presented here, however, do not simply repeat previous observations but elucidate the contrasting potential dependent conversion of the MOR to CO2 on Pt and PtRu catalysts. Three-dimensional voltammetry is furthermore applied for the first time combined with DEMS and utilised to describe the MOR, encapsulating the potential, current and time relationship of the reaction system within a single contour plot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gasteiger HA et al (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56(1–2):9–35

    CAS  Google Scholar 

  2. Wiberg GKH, Mayrhofer KJJ, Arenz M (2010) Investigation of the oxygen reduction activity on silver—a rotating disc electrode study. Fuel Cells 10(4):575–581

    Article  CAS  Google Scholar 

  3. Gasteiger HA et al (1993) Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. J Phys Chem 97(46):12020–12029

    Article  CAS  Google Scholar 

  4. Markovic NM et al (1995) Electrooxidation mechanisms of methanol and formic-acid on pt-ru alloy surfaces. Electrochim Acta 40(1):p 91–98

    Article  CAS  Google Scholar 

  5. Gasteiger HA et al (1994) Temperature-dependent methanol electrooxidation on well-characterized pt-ru alloys. J Electrochem Soc 141(7):1795–1803

    Article  CAS  Google Scholar 

  6. Gasteiger HA et al (1994) Electrooxidation of small organic-molecules on well-characterized pt-ru alloys. Electrochim Acta 39(11–12):1825–1832

    Article  CAS  Google Scholar 

  7. Mayrhofer KJJ et al (2008) Measurement of oxygen reduction activities via the rotating disc electrode method: from pt model surfaces to carbon-supported high surface area catalysts. Electrochim Acta 53(7):3181–3188

    Article  CAS  Google Scholar 

  8. Jusys Z, Kaiser J, Behm R.J et al (2002) Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation—a DEMS study. Electrochim Acta, 47(22–23):3693–3706

    Article  CAS  Google Scholar 

  9. Jusys Z, Behm RJ (2001) Methanol oxidation on a carbon-supported pt fuel cell catalysta kinetic and mechanistic study by differential electrochemical mass spectrometry. J Phys Chem B 105(44):10874–10883

    Article  CAS  Google Scholar 

  10. Jambunathan K, Jayaraman S, Hillier AC (2004) A multielectrode electrochemical and scanning differential electrochemical mass spectrometry study of methanol oxidation on electrodeposited ptxruy. Langmuir 20(5):1856–1863

    Article  CAS  Google Scholar 

  11. Jusys Z, Kaiser J, Behm RJ (2003) Methanol electrooxidation over pt/c fuel cell catalysts: dependence of product yields on catalyst loading. Langmuir 19(17):6759–6769

    Article  CAS  Google Scholar 

  12. Willsau J, Wolter O, Heitbaum J (1985) On the nature of the adsorbate during methanol oxidation at platinum—a dems study. J Electroanal Chem 185(1):163–170

    Article  CAS  Google Scholar 

  13. Jusys Z et al (2002) Activity of PtRuMeOx (Me = W, Mo or V) catalysts towards methanol oxidation and their characterization. J Power Sources 105(2):297–304

    Article  CAS  Google Scholar 

  14. Wang H, Baltruschat H (2007) DEMS study on methanol oxidation at poly—and monocrystalline platinum electrodes: the effect of anion, temperature, surface structure, ru adatom, and potential. J Phys Chem C 111(19):7038–7048

    Article  CAS  Google Scholar 

  15. Wang H, Loffler T, Baltruschat H (2001) Formation of intermediates during methanol oxidation: a quantitative dems study. J Appl Electrochem 31(7):759–765

    Article  CAS  Google Scholar 

  16. Wiberg GKH (2010) The devlopment of a state-of-the-art experimental setup demonstrated by the investigation of fuel cell reactions in alkaline electrolyte, in Lehrstühl für Physicalische Chemie. Technische Universität München: München

    Google Scholar 

  17. Dillon R et al (2004) International activities in DMFC R&D: status of technologies and potential applications. J Power Sources 127(1–2):112–126

    Article  CAS  Google Scholar 

  18. Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1–2):14–31

    CAS  Google Scholar 

  19. Wang K et al (1996) On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. Electrochim Acta 41(16):2587–2593

    Article  CAS  Google Scholar 

  20. Gasteiger HA et al (1994) Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys. J Phys Chem 98(2):617–625

    Article  CAS  Google Scholar 

  21. Serov A, Kwak C (2009) Review of non-platinum anode catalysts for DMFC and PEMFC application. Appl Catal B 90(3–4):313–320

    CAS  Google Scholar 

  22. Lai S et al (2007) Mechanisms of carbon monoxide and methanol oxidation at single-crystal electrodes. Top Catal 46(3):320–333

    Article  CAS  Google Scholar 

  23. Gojkovic SL (2003) Electrochemical oxidation of methanol on Pt3Co bulk alloy. J Serb Chem Soc 68(11):11

    Article  Google Scholar 

  24. Wang H et al (2001) Methanol oxidation on Pt, PtRu, and colloidal Pt electrocatalysts: a DEMS study of product formation. J Electroanal Chem 509(2):163–169

    Article  CAS  Google Scholar 

  25. Christensen PA et al (1994) An in situ FTIR study of the electrochemical oxidation of methanol at small platinum particles. J Electroanal Chem 370(1–2):251–258

    CAS  Google Scholar 

  26. Korzeniewski C, Childers CL (1998) Formaldehyde yields from methanol electrochemical oxidation on platinum. J Phys Chem B 1998 102(3):489–492

    Article  CAS  Google Scholar 

  27. Islam M, Basnayake R, Korzeniewski C (2007) A study of formaldehyde formation during methanol oxidation over PtRu bulk alloys and nanometer scale catalyst. J Electroanal Chem 599(1):31–40

    Article  CAS  Google Scholar 

  28. Batista EA, Iwasita T (2006) Adsorbed intermediates of formaldehyde oxidation and their role in the reaction mechanism. Langmuir 22(18):7912–7916

    Article  CAS  Google Scholar 

  29. de Lima RB et al (2007) Catalysis of formaldehyde oxidation by electrodeposits of PtRu. J Electroanal Chem 603(1):142–148

    Article  Google Scholar 

  30. Kucernak AR et al (1998) Anodic oxidation of methyl formate and its relationship to the reactions of methanol and formic acid. Electrochim. Acta 43(12–13):1705–1714

    Article  CAS  Google Scholar 

  31. Wang HS et al (2001) Methanol oxidation on Pt, PtRu, and colloidal Pt electrocatalysts: a DEMS study of product formation. J Electroanal Chem 509(2):163–169

    Article  CAS  Google Scholar 

  32. Lin WF et al (2000) Electrochemical versus gas-phase oxidation of ru single-crystal surfaces. J Phys Chem B 104(25):6040–6048

    Article  CAS  Google Scholar 

  33. Tripkovic AV et al (2002) Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim Acta 47(22–23):3707–3714

    Article  CAS  Google Scholar 

  34. Tripkovic AV et al(2006) Methanol oxidation at platinum electrodes in acid solution: comparison between model and real catalysts. vol 71 SERBIE: serbian chemical society, Belgrade p 11

    Google Scholar 

  35. Schmidt TJ, Gasteiger HA, Behm RJ (1999) Methanol electrooxidation on a colloidal PtRu-alloy fuel-cell catalyst. Electrochem Commun 1(1):1–4

    Article  CAS  Google Scholar 

  36. Teng Z-H, et al (2007) High activity Pt/C catalyst for methanol and adsorbed CO electro-oxidation. J Power Sources 164(1):105–110

    Article  CAS  Google Scholar 

  37. Li L, Xing Y (2009) Methanol electro-oxidation on pt-ru alloy nanoparticles supported on carbon nanotubes. Energies 2(3):789–804

    Article  CAS  Google Scholar 

  38. Bergamaski K et al (2006) Nanoparticle size effects on methanol electrochemical oxidation on carbon supported platinum catalysts. J Phys Chem B 110(39):19271–19279

    Article  CAS  Google Scholar 

  39. Qiu L et al (2011) Fabrication of ionic liquid-functionalized polypyrrole nanotubes decorated with platinum nanoparticles and their electrocatalytic oxidation of methanol. Chem Commun 47(10):2934–2936

    Article  CAS  Google Scholar 

  40. García G et al (2011) Methanol electrooxidation at mesoporous Pt and Pt-Ru electrodes: a comparative study with carbon supported materials. J Power Sources 196(6):2979–2986

    Article  Google Scholar 

  41. Jeon MK, McGinn PJ (2009) Improvement of methanol electro-oxidation activity of PtRu/C and PtNiCr/C catalysts by anodic treatment. J Power Sources 188(2):427–432

    Article  CAS  Google Scholar 

  42. Gojkovic SL (2004) Mass transfer effect in electrochemical oxidation of methanol at platinum electrocatalysts. J Electroanal Chem 573(2):271–276

    Article  CAS  Google Scholar 

  43. Papadopoulos N et al (1991) Three-dimensional electrochemistry: utilization of i-E-t curves for elucidation of electrochemical reactions. J Electroanal Chem 308(1–2):83–96

    CAS  Google Scholar 

  44. Yang R et al (2005) Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon 43(1):11–16

    Article  CAS  Google Scholar 

  45. Maillard F, Savinova ER, and Stimming U (2007) CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J Electroanal Chem 599(2):221–232

    Article  CAS  Google Scholar 

  46. Sarma LS et al (2007) Investigations of direct methanol fuel cell (DMFC) fading mechanisms. J Power Sources 167(2):358–365

    Article  CAS  Google Scholar 

  47. Gojkovic SL, Vidakovic TR, Durovic DR (2003) Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst. Electrochim Acta 48(24):3607–3614

    Article  CAS  Google Scholar 

  48. Meli G et al (1993) Direct electrooxidation of methanol on highly dispersed platinum-based catalyst electrodes—temperature effect. J Appl Electrochem 23(3):197–202

    Article  CAS  Google Scholar 

  49. Noel M, Vasu KI (1990) Cyclic voltammetry and the frontiers of electrochemistry. South asia books

    Google Scholar 

  50. Maiyalagan T, Viswanathan B (2008) Catalytic activity of platinum/tungsten oxide nanorod electrodes towards electro-oxidation of methanol. J Power Sources 175(2):789–793

    Article  CAS  Google Scholar 

  51. Wang M, Guo D-j, Li H-l (2005) High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. J Solid State Chem 178(6):1996–2000

    Article  CAS  Google Scholar 

  52. Lee K-S et al (2009) PtRu overlayers on Au nanoparticles for methanol electro-oxidation. Catal Today 146(1–2):20–24

    Article  CAS  Google Scholar 

  53. Barranco J, Pierna AR (2007) Bifunctional amorphous alloys more tolerant to carbon monoxide. J Power Sources 169(1):71–76

    Article  CAS  Google Scholar 

  54. Park I-S et al (2007) Electrocatalytic activity of carbon-supported Pt-Au nanoparticles for methanol electro-oxidation. Electrochim Acta 52(18):5599–5605

    Article  CAS  Google Scholar 

  55. Hamnett A et al (1990) Long-term poisoning of methanol anodes. Ber Bunsen Ges Phys Chem 94(9):1014–1020

    Article  CAS  Google Scholar 

  56. Watanabe M, Uchida M, Motoo S (1987) Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. J Electroanal Chem Interfacial Electrochem 229(1–2):395–406

    CAS  Google Scholar 

  57. Lin M-L, Lo M-Y, Mou C-Y (2011) PtRuP nanoparticles supported on mesoporous carbon thin film as highly active anode materials for direct methanol fuel cell. Catal Today 160(1):109–115

    Article  CAS  Google Scholar 

  58. Wiberg GK, Mayrhofer KJ, Arenz M (2009) Investigation of the oxygen reduction activity of non-platinum catalysts: a RDE methodology. ECS Meet Abs 902(6):349

    Google Scholar 

  59. Gasteiger HA, Markovic NM, Ross PN (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 99(20):8290–8301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ashton, S. (2012). Methanol Oxidation on HSAC Supported Pt and PtRu Catalysts. In: Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS). Springer Theses, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30550-4_5

Download citation

Publish with us

Policies and ethics