Skip to main content

Part of the book series: Springer Theses ((Springer Theses,volume 8))

Abstract

At the beginning of a thesis dedicated to the construction of a differential electrochemical mass spectrometer (DEMS), it is essential to first present the broader significance of the instruments intended application in the fundamental study of fuel cell relevant electrochemical reaction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyle R et al. (2008) Global trends in sustainable energy investment 2008. United Nations Environment Programme

    Google Scholar 

  2. Commision E (2003) EUR 20719 EN—Hydrogen energy and fuel cells—a vision of our future

    Google Scholar 

  3. Ro ST, Sohn JL (2007) Some issues on performance analysis of fuel cells in thermodynamic point of view. J Power Sources 167(2): 295–301

    Article  CAS  Google Scholar 

  4. Haas HR, Davis MT (2009) Electrode and catalyst durability requirements in automotive PEM applications: technology status of a recent MEA design and next generation challenges. ECS Trans 25(1):1623–1631

    Article  CAS  Google Scholar 

  5. Schmittinger W, Vahidi A (2008) A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J Power Sources 180(1):1–14

    Article  CAS  Google Scholar 

  6. Gasteiger HA, Marković NM (2009) Just a dream—or future reality? Science 324(5923):48–49

    Article  CAS  Google Scholar 

  7. Gasteiger HA et al (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56(1–2):9–35

    CAS  Google Scholar 

  8. Lindermeir A et al (2004) On the question of MEA preparation for DMFCs. J Power Sources 129(2):180–187

    Article  CAS  Google Scholar 

  9. Gasteiger H, Mathias M (2002) Fundamental research and development challenges in polymer electrolyte fuel cell technology. In: 202nd Meeting of the ECS. Salt Lake City

    Google Scholar 

  10. Wiberg GKH, MayrhoferK JJ, Arenz M (2010) Investigation of the oxygen reduction activity on silver—a rotating disc electrode study. Fuel Cells 10(4):575–581

    Article  CAS  Google Scholar 

  11. Gasteiger HA et al (1993) Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. J Phys Chem 97(46):12020–12029

    Article  CAS  Google Scholar 

  12. Markovic NM et al (1994) Structural effects in electrocatalysis—oxygen reduction on platinum low-index single-crystal surfaces in perchloric-acid solutions. J Electroanal Chem 377(1–2):249–259

    CAS  Google Scholar 

  13. Stamenkovic VR et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241–247

    Article  CAS  Google Scholar 

  14. Markovic NM et al (1995) Electrooxidation mechanisms of methanol and formic-acid on PT-RU alloy surfaces. Electrochim Acta 40(1):91–98

    Article  CAS  Google Scholar 

  15. Gasteiger H et al (1994) Temperature-dependent methanol electrooxidation on well-characterized PT-RU alloys. J Electrochem Soc 141(7):1795–1803

    Article  CAS  Google Scholar 

  16. Gasteiger HA et al (1994) Electrooxidation of small organic-molecules on well-characterized PT-RU alloys. Electrochim Acta 39(11–12):1825–1832

    Article  CAS  Google Scholar 

  17. Koper MTM (2005) Combining experiment and theory for understanding electrocatalysis. J Electroanal Chem 574(2):375–386

    Article  CAS  Google Scholar 

  18. Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45(4–6):117–229

    Article  CAS  Google Scholar 

  19. Markovic NM, Ross PN (2000) Electrocatalysts by design: from the tailored surface to a commercial catalyst. Electrochim Acta 45(25–26):4101–4115

    Article  CAS  Google Scholar 

  20. Mayrhofer KJJ et al (2008) Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim Acta 53(7):3181–3188

    Article  CAS  Google Scholar 

  21. Paulus UA et al (2002) Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim Acta 47(22–23):3787–3798

    Article  CAS  Google Scholar 

  22. Paulus UA et al (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495(2):134–145

    Article  CAS  Google Scholar 

  23. Schmidt TJ et al (1998) Characterization of high-surface area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145(7):2354–2358

    Article  CAS  Google Scholar 

  24. Mayrhofer KJJ et al (2008) Fuel cell catalyst degradation on the nanoscale. Electrochem Commun 10(8):1144–1147

    Article  CAS  Google Scholar 

  25. Mayrhofer KJJ et al (2008) Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment. J Power Sources 185(2):734–739

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ashton, S. (2012). Introduction. In: Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS). Springer Theses, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30550-4_1

Download citation

Publish with us

Policies and ethics