Skip to main content

Heat Transfer Enhancement in Short Corrugated Mini-Tubes

  • Chapter
  • First Online:
Numerical Analysis of Heat and Mass Transfer in Porous Media

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 27))

Abstract

Heat transfer phenomena are studied with standing waves inside the tubes for static and moving sinusoidal corrugated walls. The past studies have been done on big-size (dimensions in m) and micro-sized circular tubes (dimensions in μm). We are focusing on intermediate size tubes (dimensions in mm). Numerical simulations, using finite volume commercial software, were performed to study the effects of spatial wavelengths on heat transfer enhancement and associated pressure drop. We imposed 5, 10, 15 and 20 3D sinusoidal radial sine waves along the length of the tube. Heat transfer characteristics of static corrugated wavy walls were calculated for various imposed Reynolds numbers (1 < Re < 120) and amplitude of the wave was varied from 1 to 20 % of the diameter of the tube. For static wall case, upon increasing the number of sine waves, the Nusselt number starts to decrease; the associated pressure drop and friction factor increases very rapidly at the highest values of amplitude. On the other hand, in comparison to the static corrugated wall tube, the pressure drop is reduced by 20–80 % and heat transfer is enhanced by 35–70 % for highest amplitude when frequencies in the range 0 < f < 60 Hz are imposed on tube wall to make the corrugated tube moving in transverse direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan, Z., Tao, W., Wang, Q.: Numerical prediction for laminar forced convection heat transfer in parallel-plate channels with streamwise-periodic rod disturbances. Int. J. Numer. Method Fluids 28, 1371–1388 (1998)

    Article  Google Scholar 

  2. Goldstein, L., Sparrow, E.M.: Heat and Mass transfer characterstics for flow in a corrugated wall channel. Trans. ASME J. Heat Transf.99, 187–195 (1997)

    Article  Google Scholar 

  3. Wang, C.C., Chen, C.K.: Forced Convection in a wavy-wall channel. Int. J. Heat Mass Transf. 45, 2587–2795 (2002)

    Article  Google Scholar 

  4. Zhang, J., Kundu, J., Manglik, R.M.: Effect of waviness and spacing on lateral vortex structure and laminar heat transfer in wavy-plate-fin cores. Int. J. Heat Mass Transf. 47, 1719–1730 (2004)

    Article  Google Scholar 

  5. Metwally, H.M., Manglik, R.M.: Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated plate channels. Int. J. Heat Mass Transf. 47, 2283–2292 (2004)

    Article  Google Scholar 

  6. Niceno, B., Nobile, E.: Numerical analysis of fluid flow and heat transfer in periodic wavy channels. Int. J. Heat Fluid Flow 22, 156–167 (2001)

    Article  Google Scholar 

  7. Mohamed, N., Khedidja, B., Abdelkader, S., Belkacem, Z.: Heat Transfer and Flow field in the entrance region of a symmetric wavy-channel with constant wall heat flux density. Int. J. Dyn. Fluid 3, 63–79 (2007)

    Google Scholar 

  8. Bellhouse, B.J., Bellhouse, F.H., Curl, C.M., MacMillan, T.I., Gunning, A.J., Spratt, E.H., MacMurray, S.B., Nelems, J.M.: A high efficiency membrane oxygenator and pulsatile pumping system and its application to animal trials. Trans A. Soc. Artif. Internal Organs 19, 72–79 (1973)

    Article  CAS  Google Scholar 

  9. Mackley, M.R., Stonestreet, P.: Heat transfer and associated energy dissipation for oscillatory flow in baffled tubes. Chem. Eng. Sci. 50, 2211–2224 (1995)

    Article  CAS  Google Scholar 

  10. Howes, T., Mackley, M.R., Roberts, E.P.L.: The simulaton of choatic mixing and dispersion for periodic flows in baffled channels. Chem. Eng. Sci. 46, 1669–1677 (1991)

    Article  CAS  Google Scholar 

  11. Farhanieh, B., Herman, C., Sunden, B.: Numerical enhancement and experimental analysis of laminar fluid flow and forced convection heat transfer in a grooved duct. Int. J. Heat Mass Transf. 36, 1609–1617 (1993)

    Article  CAS  Google Scholar 

  12. Fusegi, T.: Numerical study of mixed convection in a channel with periodic cavities. Proceedings of 9th International heat Transfer conference, 5 (1994) 471-476

    Google Scholar 

  13. Nigen, J.S., Amon, C.H.: Time-dependent conjugate heat transfer characterstics of self-sustained oscillatory flows in a grooved channel. ASME J. Fluid Engg. 116, 499–507 (1994)

    Article  Google Scholar 

  14. Herman, C., Kang, E., Huang, H., Puranik, B.: Experimental visualization of unsteady temperature fields in electronic cooling applications, ASME HTD vol. 319/EEP-vol. 15 (1995) 33–40

    Google Scholar 

  15. Nishimura, T., Kunitsugu, K., Nakagiri, H.: Fluid Mixing and local mass transfer characterstics in a grooved channel for self-sustained oscillatory flow. Heat Transf. Jpn Res 27, 522–534 (1998)

    Article  Google Scholar 

  16. Wang, G., Vanka, S.P.: 1995 Convective heat transfer in periodic wavy passages. Int. J. Heat Mass Transf. 38(17), 3219–3230 (1995)

    Article  CAS  Google Scholar 

  17. Nishimura, T., Matsune, S.: Mass transfer enhancement in a sinusoidal wavy channel for pulsatile flow. Warme und Stoffuberagung 32, 65–72 (1996)

    Google Scholar 

  18. Nishimura, T., Matsune, S.: Vortices and wall shear stresses in asymmetric and symmetric channels with sinusoidal wavy walls for pulsatile fow at low Reynolds numbers. Int. J. Heat Fluid Flow 19(1998), 583–593 (1998)

    Article  CAS  Google Scholar 

  19. Kuppan, T.: Heat Exchanger Design Book. Marcel Dekker Inc, New York (2000)

    Google Scholar 

Download references

Acknowledgments

Financial support from CNRS Energy CITAMPE PR09-3.1.3-2 and FNRAE SYRTIPE are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kumar .

Editor information

Editors and Affiliations

Appendix

Appendix

Local tube radius is given by:

$$ R\left( x \right) = R_{0} + A\sin \left( {\frac{2\pi \, x}{\lambda }} \right) $$
(16)

The surface between 0 and x is given by:

$$ S(x) = 2\pi \int\limits_{0}^{x} {\left( {R_{0} + A\sin \left( {\frac{2\pi \,x}{\lambda }} \right)\sqrt {1 + \frac{{4A^{2} \pi^{2} \cos \left( {\frac{2\pi \,x}{\lambda }} \right)^{2} }}{{\lambda^{2} }}} } \right)} dx $$
(17)

The result is given by the following expression:

$$ S\left( x \right) = \frac{1}{4A\pi \lambda }\left( {\frac{{8A^{4} \pi^{3} + 2A^{2} \pi \lambda^{2} + \sqrt {A^{2} } \lambda^{2} \sqrt {4A^{2} \pi^{2} + \lambda^{2} } Log\left[ {2\sqrt {A^{2} } \pi + \sqrt {4A^{2} \pi^{2} + \lambda^{2} } } \right]}}{{\sqrt {1 + \frac{{4A^{2} \pi^{2} }}{{\lambda^{2} }}} }}} \right. + $$
$$ \left( {\sqrt {2A^{2} \pi^{2} + \lambda^{2} + 2A^{2} \pi^{2} \cos \left( {\frac{4\pi x}{\lambda }} \right)} \left( {4A\pi R_{0} \sqrt {2A^{2} \pi^{2} + \lambda^{2} + 2A^{2} \pi^{2} \cos \left( {\frac{4\pi x}{\lambda }} \right)} } \right.} \right. $$
$$ EllipticE\left[ {\frac{2\pi x}{\lambda },\frac{{4A^{2} \pi^{2} }}{{4A^{2} \pi^{2} + \lambda^{2} }}} \right] - \sqrt {\frac{{2A^{2} \pi^{2} + \lambda^{2} + 2A^{2} \pi^{2} \cos \left( {\frac{4\pi x}{\lambda }} \right)}}{{4A^{2} \pi^{2} + \lambda^{2} }}} $$
$$ \left( {2A^{2} \pi \cos \left( {\frac{2\pi x}{\lambda }} \right)} \right.\sqrt {2A^{2} \pi^{2} + \lambda^{2} + 2A^{2} \pi^{2} \cos \left( {\frac{4\pi x}{\lambda }} \right)} + \sqrt {A^{2} } \lambda^{2} $$
$$ {\raise0.7ex\hbox{${\left. {\left. {\left. {Log\left[ {2\sqrt {A^{2} } \pi \cos \left( {\frac{2\pi x}{\lambda }} \right) + \sqrt {2A^{2} \pi^{2} + \lambda^{2} + 2A^{2} \pi^{2} \cos \left( {\frac{4\pi x}{\lambda }} \right)} } \right]} \right)} \right)} \right)}$} \!\mathord{\left/ {\vphantom {{\left. {\left. {\left. {Log\left[ {2\sqrt {A^{2} } \pi \cos \left( {\frac{2\pi x}{\lambda }} \right) + \sqrt {2A^{2} \pi^{2} + \lambda^{2} + 2A^{2} \pi^{2} \cos \left( {\frac{4\pi x}{\lambda }} \right)} } \right]} \right)} \right)} \right)} {}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${}$}} $$
$$ \left. {\left( {\sqrt {\frac{{2A^{2} \pi^{2} + \lambda^{2} + 2A^{2} \pi^{2} \cos \left( {\frac{4\pi x}{\lambda }} \right)}}{{\lambda^{2} }}} \sqrt {\frac{{2A^{2} \pi^{2} + \lambda^{2} + 2A^{2} \pi^{2} \cos \left( {\frac{4\pi x}{\lambda }} \right)}}{{4A^{2} \pi^{2} + \lambda^{2} }}} } \right)} \right) $$
(18)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumar, P., Topin, F., Miscevic, M., Lavieille, P., Tadrist, L. (2012). Heat Transfer Enhancement in Short Corrugated Mini-Tubes. In: Delgado, J., de Lima, A., da Silva, M. (eds) Numerical Analysis of Heat and Mass Transfer in Porous Media. Advanced Structured Materials, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30532-0_7

Download citation

Publish with us

Policies and ethics