Skip to main content

Resin Transfer Molding Process: Fundamentals, Numerical Computation and Experiments

  • Chapter
  • First Online:
Numerical Analysis of Heat and Mass Transfer in Porous Media

Abstract

Resin Transfer Molding (RTM) is one of the most widely known composite manufacturing technique of the liquid molding family, being extensively studied and used to obtain advanced composite materials comprised of fibers embedded in a thermoset polymer matrix. The fibrous reinforcement is considered a porous medium regarding its infiltration by the polymer resin. In this sense, this chapter aims to briefly discuss multiphase flow and heat transfer theory in RTM process, focusing on a multifluid model and the Control Volume/Finite Element (CV/FE) method. Finally, computational analysis was developed on the basis of ANSYS CFX® and PAM-RTM commercial software’s for the investigation of the fluid flow in RTM composite molding. In order to show the versatility and performance of the commercial codes, RTM experiments were carried under distinct injection pressure and fiber volume fraction conditions using plain-weave glass fiber cloth as the porous media. The transient numerical simulations provided information about volume fraction, pressure and velocity distribution of the phases (resin and air) inside the porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Military Handbook—MIL-HDBK-17-1F: Composite Materials Handbook, vol. 1—Polymer Matrix Composites Guidelines for Characterization of Structural Materials. U.S. Department of Defense (2002)

    Google Scholar 

  2. Gay, D., Suong, V.H., Tsai, S.W.: Composite Materials: Design and Applications. CRC Press, Boca Raton (2003)

    Google Scholar 

  3. Liu, K., Takagi, H., Osugi, R., Yang, Z.: Effect of physicochemical structure of natural fiber on transverse thermal conductivity of unidirectional abaca/bamboo fiber composites. Compos. Part A (2012, in press)

    Google Scholar 

  4. Asaad, J.N., Tawfik, S.Y.: Polymeric composites based on polystyrene and cement dust wastes. Mater. Des. 32, 5113–5119 (2011)

    Article  CAS  Google Scholar 

  5. Gamstedt, E.K., Sandell, R., Berthold, F., Pettersson, T., Nordgren, N.: Characterization of interfacial stress transfer ability of particulate cellulose composite materials. Mech. Mater. 43, 693–704 (2011)

    Article  Google Scholar 

  6. Morren, G., Bottiglieri, M., Bossuyt, S., Sol, H., Lecompte, D., Verleye, B., Lomov, S.V.: A reference specimen for permeability measurements of fibrous reinforcements for RTM. Compos. Part A 40, 244–250 (2009)

    Article  Google Scholar 

  7. Potter, K.D.: The early history of the resin transfer moulding process for aerospace applications. Compos. Part A 30, 619–621 (1999)

    Article  Google Scholar 

  8. Lawrence, J., Simacek, P., Advani, S.: New advances in modeling and simulation of liquid composite molding processes. In: Proceedings of the International SAMPE Symposium and Exhibition, pp. 1–12, Long Beach (2006)

    Google Scholar 

  9. Haider, M., Hubert, P., Lessard, L.: An experimental investigation of class a surface finish of composites made by the resin transfer molding process. Compos. Sci. Techol. 67, 3176–3186 (2007)

    Article  CAS  Google Scholar 

  10. Rudd, C.D., Lac, K.N., Mangin, C.G.E.: Liquid moulding, structural reaction injection moulding and related processing techniques. Woodhead Publishing Limited, UK (1997)

    Google Scholar 

  11. He, F., Wang, Y., Huang, Y., Wan, Y.: Preparation and mechanical properties of 3-D braided glass fiber reinforced light-cured resin composites. Mater. Lett. 60, 3339–3341 (2006)

    Article  CAS  Google Scholar 

  12. Leclerc, J.S., Ruiz, E.: Porosity reduction using optimized flow velocity in resin transfer molding. Compos. Part A 39, 1859–1868 (2008)

    Article  Google Scholar 

  13. Li, J., Zhang, C., Liang, R., Wang, B.: Statistical characterization and robust design of RTM processes. Compos. Part A 36, 564–580 (2005)

    Article  CAS  Google Scholar 

  14. Gourichon, B., Deléglise, M., Binetruy, C., Krawczak, P.: Dynamic void content prediction during radial injection in liquid composite molding. Compos. Part A 39, 46–55 (2008)

    Article  Google Scholar 

  15. Gokce, A., Chohra, M., Advani, S.G., Walsh, S.M.: Permeability estimation algorithm to simultaneously characterize the distribution media and the fabric preform in vacuum assisted resin transfer molding process. Compos. Sci. Techol. 65, 2129–2139 (2005)

    Article  CAS  Google Scholar 

  16. Han, K., Jiang, S., Zhang, C., Wang, B.: Flow modeling and simulation of SCRIMP for composites manufacturing. Compos. Part A 31, 79–86 (2000)

    Article  Google Scholar 

  17. Hoes, K., Dinescu, D., Sol, H., Vanheule, M., Parnas, R.S., Luo, Y., Verpoest, I.: Compos. Part A 33, 959–969 (2002)

    Article  Google Scholar 

  18. Matsuzaki, R., Kobayashi, S., Todoroki, A., Mizutani, A.: Full-field monitoring of resin flow using an area-sensor array in a VaRTM process. Compos. Part A 42, 550–559 (2011)

    Article  Google Scholar 

  19. Grujicic, M., Chittajallu, K.M., Walsh, S.: Non-isothermal preform infiltration during the vacuum-assisted resin transfer molding (VARTM) process. Appl. Surf. Sci. 245, 51–64 (2005)

    Article  CAS  Google Scholar 

  20. Correia, N.C., Robitaille, F., Long, A.C., Rudd, C.D., Simacek, P., Advani, S.G.: Analysis of the vacuum infusion moulding process: I. Analytical formulation. Compos. Part A 36, 1645–1656 (2005)

    Article  Google Scholar 

  21. Buntain, M.J., Bickerton, S.: Modeling forces generated within rigid liquid composite molding tools. Part A: experimental study. Compos. Part A 38, 1729–1741 (2007)

    Google Scholar 

  22. Garay, A.C., Heck, V., Zatera, A., Amico, S.C.: Influence of the calcium carbonate (CaCO3) in the infiltration process and properties of composites molded by RTM and RTM light. In: 19º Brazilian Congress of Materials Sciences and Engineering, Campos do Jordão, Brazil (2010) (In Portuguese)

    Google Scholar 

  23. Han, K., Jiang, S., Zhang, C., Wang, B.: Flow modeling and simulation of SCRIMP for composites manufacturing. Compos. Part A 31, 79–86 (2000)

    Article  Google Scholar 

  24. Hudson, A.: Vacuum-assisted RTM increasingly popular. Compos. Techol. March/April, 24–30 (1996)

    Google Scholar 

  25. Liu, S., Masliyah, H.: Dispersion in porous media. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  26. Bear, J.: Dynamics of Fluid in Porous Media. Dover Publications Inc, New York (1972)

    Google Scholar 

  27. Allen III, M.B., Behie, G.A., Trangenstein, J.A.: Multiphase Flow in Porous Media. Springer-Verlag, Berlin (1988)

    Book  Google Scholar 

  28. Delgado, J.M.P.D.: Longitudinal and transverse dispersion in porous media. Trans. IChemE Part A, Chem. Eng. Res. Des. 85(A9), 1245–1252 (2007)

    Google Scholar 

  29. Hunt, A.G., Skinner, T.E., Ewing, R.P., Ghanbarian-Alavijeh, B.: Dispersion of solute in porous media. Eur. Phys. J. B 80(4), 411–432 (2011)

    Article  CAS  Google Scholar 

  30. Vallabh, R., Banks-Lee, P., Seyam, A.: New approach for determining tortuosity in fibrous porous media. J. Eng. Fiber Fabr. 5(3), 7–15 (2010)

    CAS  Google Scholar 

  31. Epstein, N.: Tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Eng. Sci. 44(3), 777–779 (1989)

    Article  CAS  Google Scholar 

  32. ANSYS Inc.: CFX®-Theory manual (2010)

    Google Scholar 

  33. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer-Verlag, New York (2006)

    Google Scholar 

  34. Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer. Taylor & Francis, Philadelphia (1997)

    Google Scholar 

  35. Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics: Fundamental and General Techniques, vol. 1. Springer-Verlag, Berlin (1991)

    Google Scholar 

  36. Majumdar, P.: Computational Methods for Heat and Mass Transfer. Taylor & Francis, New York (2005)

    Google Scholar 

  37. Mojtabi, A., Charrier-Mojtabi, M.: Double-diffusive convection in porous media. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  38. Magyari, E., Rees, D.A.S., Keller, B.: Effect of viscous dissipation on the flow in fluid saturated porous media. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  39. Hugo, J., Topin, F.: Metal foams design for heat exchangers: structure and effectives transport properties. In: Delgado, J.M.P.Q. (ed.) Heat and Mass Transfer in Porous Media. Springer-Velag, Berlin (2012)

    Google Scholar 

  40. Hsu, C.: Dynamic modeling of convective heat transfer in porous media. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  41. McKibbin, R.: Mathematical modeling for heat and mass transport in geothermal systems. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media. Elsevier, Oxford (1998)

    Google Scholar 

  42. Ye, X., Qiu, J., Zhang, C., Liang, R., Wang, B.: A finite element-based heuristic estimation of local perform permeability for resin transfer molding. Transp. Porous Media 76, 247–263 (2009)

    Article  CAS  Google Scholar 

  43. Nield, D.A.: Modeling fluid flow in saturated porous media and at interfaces. In: Ingham, D.B., Pop, I. (eds.) Transport phenomena in Porous Media II. Elsevier, Oxford (2002)

    Google Scholar 

  44. Lage, J.L.: The fundamental theory of flow through permeable media from Darcy to turbulence. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media. Elsevier, Oxford (1998)

    Google Scholar 

  45. Chen, C.K., Hsiao, S.W.: Transport phenomena in enclosed porous cavities. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media. Elsevier, Oxford (1998)

    Google Scholar 

  46. Vafai, K., Amiri, A.: Non-Darcian effects in confined forced convection flows. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media. Elsevier, Oxford (1998)

    Google Scholar 

  47. Merrikh, A.A., Lage, J.L.: From continuum to porous-continuum: the visual resolution impact on modeling natural convection in heterogeneous media. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media III. Elsevier, Oxford (2005)

    Google Scholar 

  48. Advani, S.G., Hsiao, K.: Transport phenomena in liquid composites molding processes and their roles in process control and optimization. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  49. Parnas, R.S., Phelan Jr, F.R.: The effect of heterogeneous porous media on mold filling in resin transfer molding. SAMPE Q. 22(2), 53–60 (1991)

    CAS  Google Scholar 

  50. Pillai, K.M.: Modeling the unsaturated flow liquid composite molding processes: a review and some thoughts. J. Compos. Mater. 38(23), 2097–2118 (2004)

    Article  CAS  Google Scholar 

  51. Cheng, P., Hsu, C.: Heat conduction. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media. Elsevier, Oxford (1998)

    Google Scholar 

  52. Wang, C.Y.: Modeling multiphase flow and transport in porous media. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media. Elsevier, Oxford (1998)

    Google Scholar 

  53. Bradean, R., Heggs, P.J., Inghan, D.B., Pop, I.: Convective heat flow from suddenly heated surfaces embedded in porous media. I. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media. Elsevier, Oxford (1998)

    Google Scholar 

  54. Kaviany, M.: Principles of Convective Heat Transfer, 2nd edn. Springer, New York (2001)

    Google Scholar 

  55. Rees, D.A.S., Pop, I.: Local thermal non-equilibrium in porous medium convective. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media III. Elsevier, Oxford (2005)

    Google Scholar 

  56. de Lemos, M.J.S.: The double-decomposition concept for turbulent transport in porous media. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media III. Elsevier, Oxford (2005)

    Google Scholar 

  57. de Lemos, M.J.S.: Mathematical modeling and applications of turbulent heat and transfer in porous media. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  58. Nield, D.A., Kuznetsov, A.V.: Heat transfer in bidisperse porous media. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media III. Elsevier, Oxford (2005)

    Google Scholar 

  59. de Lemos, M.J.S.: Turbulence in Porous Media: Modeling and Applications. Elsevier, Amsterdan (2006)

    Google Scholar 

  60. Hu, J.L., Liu, Y., Shao, X.M.: Study on void formation in multi-layer woven fabrics. Compos. Part A Appl. Sci. Manuf. 35, 595–603 (2004)

    Article  Google Scholar 

  61. Shojaei, A.: A numerical study of filling process through multilayer preforms in resin injection/compression molding. Compos. Sci. Techol. 66, 1546–1557 (2006)

    Article  CAS  Google Scholar 

  62. Yang, J., Jia, Y.X., Sun, S., Ma, D.J., Shi, T.F., An, L.J.: Enhancements of the simulation method on the edge effect in resin transfer molding processes. Mater. Sci. Eng. A 478, 384–389 (2008)

    Article  Google Scholar 

  63. Phelan, F.R.: Simulation of the injection process in resin transfer molding. Polym. Compos. 18, 460–476 (1997)

    Article  CAS  Google Scholar 

  64. Reddy, J.: Introduction to the Finite Element Method. McGraw-Hill Science/Engineering/Math, New York (2005)

    Google Scholar 

  65. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York (1980)

    Google Scholar 

  66. Maliska, C.R.: Computational Heat Transfer and Fluid Mechanics. LTC, Rio de Janeiro (2004)

    Google Scholar 

  67. Versteeg, H., Malalasekra, M.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Prentice Hall, London (2007)

    Google Scholar 

  68. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  Google Scholar 

  69. Srinivasan, V., Salazar, A.J., Saito, K.: Modeling the disintegration of modulated liquid jets using volume-of-fluid (VOF) methodology. Appl. Math. Model. 35, 3710–3730 (2001)

    Article  Google Scholar 

  70. Shäfer, M.: Computational Engineering. Springer-Verlag, Berlin (2006)

    Google Scholar 

  71. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics. Springer-Verlag, Berlin (2002)

    Book  Google Scholar 

  72. Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics: Specific Techniques for Different Flow Categories, vol. 2. Springer-Verlag, Berlin (1991)

    Google Scholar 

  73. Gutowski, T.G., Morigaki, T., Cai, Z.: The consolidation of laminate composites. J. Compos. Mater. 21(2), 172–188 (1987)

    Article  CAS  Google Scholar 

  74. Kokx, V.S. Jr.: Modeling the filling phase of liquid composite moulding processes, including dynamic mould deformations. Ph.D. thesis, University of Auckland, New Zealand (2002)

    Google Scholar 

  75. Kokx, V.S. Jr., Bickerton, S.: Modeling liquid composite molding processes involving dynamic cavity thickness changes. In: 48th International SAMPE Symposium and Exhibition, Long Beach, 1690–1701 (2003)

    Google Scholar 

  76. Luz, F.F.: Comparative analysis of fluid flow in RTM experiments utilizing commercial softwares. Master dissertation, Materials Engineering Department, Federal University of Rio Grande do Sul, Brazil (2011)

    Google Scholar 

  77. Luz, F.F., Amico, S.C., Cunha, A.L., Barbosa, E.S., de Lima, A.G.B.: Applying computational analysis in studies of resin transfer moulding. Defect Diffus. Forum 326–328, 158–163 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors thank to the Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for supporting this work, and are also grateful to the authors of the references in this chapter that helped in the improvement of quality. Sincere thanks to Prof. João M.P.Q. Delgado (Editor) by the opportunity given to present our research in this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Gilson Barbosa de Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luz, F.F., Amico, S.C., Souza, J.Á., Barbosa, E.S., de Lima, A.G.B. (2012). Resin Transfer Molding Process: Fundamentals, Numerical Computation and Experiments. In: Delgado, J., de Lima, A., da Silva, M. (eds) Numerical Analysis of Heat and Mass Transfer in Porous Media. Advanced Structured Materials, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30532-0_5

Download citation

Publish with us

Policies and ethics