Skip to main content

Transient Diffusion in Arbitrary Shape Porous Bodies: Numerical Analysis Using Boundary-Fitted Coordinates

  • Chapter
  • First Online:
Numerical Analysis of Heat and Mass Transfer in Porous Media

Abstract

This chapter provides information about the diffusion phenomenon (heat and mass transfer) in porous materials such as definition, classification, modeling and experiments, with particular reference to capillary-porous body with arbitrary shape. A transient three-dimensional mathematical formulation written in boundary-fitted coordinates and all numerical formalism to discretize the diffusion equation by using the finite-volume method, including grid generation and numerical analysis of the computational solution are presented. Applications to food and ceramic industries have been done with success. An optimization technique has been presented to estimation of transport properties by comparison between numerical and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer-Verlag, New York (1992)

    Google Scholar 

  2. Bejan, A.: Convection Heat Transfer. Wiley, New York (1995)

    Google Scholar 

  3. Nield, D.A.: Modeling fluid flow in saturated porous media and at interfaces. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media II, Elsevier, Oxford (2002)

    Google Scholar 

  4. Lima, A.G.B., Farias Neto, S.R., Silva, W.P.: Heat and mass transfer in porous materials with complex geometry: Fundamentals and applications. In: Delgado, J.M.P.Q. (ed.) Heat and Mass Transfer in Porous Media. Springer-Verlag, Berlin (2012)

    Google Scholar 

  5. Lima, A.G.B., Oliveira, L.G., Lima, W.C.P.B.: Heat transfer in a packed-bed cylindrical reactor of elliptic cross section: mathematical modeling and simulation. In: Öchsner, A., Silva, L.F.M., Altenbach, H. (eds.) Materials with Complex Behavior II: Properties, Non-classical Materials and New Technologies. Spriger-Verlag, Berlin (2012)

    Google Scholar 

  6. Strumillo, C., Kudra, T.: Drying: Principles, Science and Design. Gordon and Breach Science Publishers, New York (1986)

    Google Scholar 

  7. Kowalski, S.J.: Thermomechanics of drying processes. Springer-Verlag, Berlin (2003)

    Google Scholar 

  8. Datta, A.K.: Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. J. Food Eng. 80, 80–95 (2007)

    Article  Google Scholar 

  9. Luikov, A.V.: Heat and Mass Transfer in Capillary Porous Bodies. Pergamon Press, New York (1966)

    Google Scholar 

  10. Keey, R.B.: Drying of Loose and Particulate Materials. Hemisphere Publishing Corporation, New York (1992)

    Google Scholar 

  11. Brooker, D.B., Bakker-Arkema, F.W., Hall, C.W.: Drying and storage of grains and oilseeds. AVI Book, New York (1992)

    Google Scholar 

  12. Fick, A.: Ann. Phys. 170, 59 (1855)

    Article  Google Scholar 

  13. Hwang, S-.T, Kammermeyer, K.: Membranes in separations. Wiley, New York (1975)

    Google Scholar 

  14. Shukla, K.N.: Diffusion Processes During Drying of Solids. World Scientific, Singapore (1990)

    Book  Google Scholar 

  15. Lewis, W.K.: The rate of drying of solid materials. J. Ind. Eng. Chem. 13, 427–432 (1921)

    Article  CAS  Google Scholar 

  16. Sherwood, T.K: The drying of solid, Pt. I. Ind. Eng. Chem. 21, 12–16 (1929a)

    Google Scholar 

  17. Sherwood, T.K.: The drying of solids, Pt. II. Ind. Eng. Chem. 21, 976–980 (1929)

    Article  CAS  Google Scholar 

  18. Sherwood, T.K.: The drying of solids, Pt. III, Mechanism of the drying of pulp and paper. Ind. Eng. Chem. 22, 132–136 (1930)

    Article  CAS  Google Scholar 

  19. Newman, A.B.: Diffusion and surface emission equation. Trans. AIChe. 27, 203–220 (1931)

    Google Scholar 

  20. Fortes, M., Okos, M.R.: Drying theories: Their bases and limitations as applied to foods and grains. In: Mujumdar, A.S. (ed.) Advances in Drying. Hemisphere Publishing Corporation, Washington (1980)

    Google Scholar 

  21. Fourier, J.B.: Théorie analytique de la chaleur, English Translation by A. Freeman. Dover Publishing, New York (1822)

    Google Scholar 

  22. Kaviany, M.: Principles of Heat Transfer. Wiley, New York (2002)

    Google Scholar 

  23. Chin-Tsau, Hsu: Dynamic modeling of convective heat transfer in porous media. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn. CRC Press/Taylor & Francis, Boca Raton (2005)

    Google Scholar 

  24. Vafai, K., Amiri, A.: Non-Darcian effects in confined forced convection flows. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media. Elsevier, Oxford (1998)

    Google Scholar 

  25. Rosen, H.N.: Recent advances in the drying of solid wood. In: Mujumdar, A.S. (ed.) Advances in Drying, Vol 4, Hemisphere Publishing Corporation, Berlin (1987)

    Google Scholar 

  26. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. University Press, New York (1959)

    Google Scholar 

  27. Luikov, A.V.: Analytical heat diffusion theory. Academic Press, Inc. Ltd., London (1968)

    Google Scholar 

  28. Gebhart, B.: Heat Conduction and Mass Diffusion. McGraw-Hill, Inc., New York (1993)

    Google Scholar 

  29. Silva, W.P., Precker, J.W., Silva, C.M.D.P.S., Silva, D.D.P.S.: Determination of effective diffusivity via minimization of the objective function by scanning: application to drying of cowpea. J. Food Eng. 95, 298–304 (2009)

    Article  Google Scholar 

  30. Silva, W.P., Precker, J.W., Silva, C.M.D.P.S., Gomes, J.P.: Determination of effective diffusivity and convective mass transfer coefficient for cylindrical solids via analytical solution and inverse method: application to the drying of rough rice. J. Food Eng. 98, 302–308 (2010)

    Article  Google Scholar 

  31. Silva, W.P., Silva, C.M.D.P.S., Farias, V.S.O., Gomes, J.P.: Diffusion models to describe the drying process of peeled bananas: optimization and simulation. Drying Tech. 30(2), 164–174 (2012a)

    Google Scholar 

  32. Haji-Sheikh, A., Sparrow, E.M.: The solution of heat conduction problems by probability methods. Trans. ASAE. J. Heat Transf. 89, 121–131 (1967)

    Article  CAS  Google Scholar 

  33. Beck, J.V., Cole, K.D., Haji-Sheikh, A., Litkouhi, B.: Heat Conduction Using Green’s Functions. Hemispheric Publishing Corporation, New York (1992)

    Google Scholar 

  34. Alassar, R.S: Heat conduction from spheroids. J. Heat Transf. 121, 497–499 (1999)

    Google Scholar 

  35. Wu, B., Yang, W., Jia, C.: A three-dimensional numerical simulation of transient heat and mass transfer inside a single rice kernel during the drying process. Biosystems Eng. 87(2), 191–299 (2004)

    Article  Google Scholar 

  36. Lima, D.R., Farias, S.N., Lima, A.G.B.: Mass transport in spheroids using the Galerkin method. Braz. J. Chem. Eng. 21, 667–680 (2004)

    Article  Google Scholar 

  37. Nascimento, J.J.S., Lima, A.G.B., Teruel, B.J., Belo, F.A.: Heat and mass transfer including shrinkage during ceramics bricks drying. Información Tecnológica 17(6), 145 (2006). (In Spanish)

    Google Scholar 

  38. Hacihafizoglu, O., Cihan, A, Kahveci, K., Lima, A.G.B.: A liquid diffusion model for thin-layer drying of rough rice. European Food Res. Tech. 226, 787–793 (2008)

    Google Scholar 

  39. Cihan, A., Kahveci, K., Hacihafizo?lu, O., Lima, A.G.B.: A diffusion based model for intermittent drying of rough rice. Heat Mass Transf. 44, 905–911 (2008)

    Google Scholar 

  40. Carmo, J.E.F., Lima, A.G.B.: Mass transfer inside oblate spheroidal solids: modelling and simulation. Braz. J. Chem. Eng. 25(1), 19–26 (2008)

    Article  CAS  Google Scholar 

  41. Salinas, C., Ananias, A., Alvear, M.: Wood drying simulation. Maderas, Ciência e Tecnologia. 6(1), 3 (2004). (In Spanish)

    Google Scholar 

  42. Silva, W.P., Precker, J.W., Silva, D.D.P.S., Silva, C.D.P.S., Lima, A.G.B.: Numerical simulation of diffusive processes in solids of revolution via finite volume method and generalized coordinates. Int. J. Heat Mass Transfer 52(21–22), 4976–4985 (2009)

    Article  Google Scholar 

  43. Silva, W.P., Silva, C.M.D.P.S., Silva, D.D.P.S., Neves, G.A., Lima, A.G.B.: Mass and heat transfer study in solids of revolution via numerical simulations using finite volume method and generalized coordinates for the Cauchy boundary condition. Int. J. Heat Mass Transfer 53(5–6), 1183–1194 (2010)

    Article  Google Scholar 

  44. Crank, J.: The Mathematics of Diffusion. Clarendon Press, Oxford (1992)

    Google Scholar 

  45. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport phenomena. John Wiley & Sons, Inc., New York (2001)

    Google Scholar 

  46. Maliska, C.R.: Computational heat transfer and fluid mechanics. LTC Editora S. A. Rio de Janeiro (2004). (In Portuguese)

    Google Scholar 

  47. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publish Corporation, New York (1980)

    Google Scholar 

  48. Silva, W.P.: Diffusion transport in solids with arbitrary shape using generalized coordinates. Doctoral Thesis. Process Engineering, Center of Science and Technology, Federal University of Campina Grande, Campina Grande-PB, Brazil (2007). (In Portuguese)

    Google Scholar 

  49. Silva, W.P.: Discretization in computational transport phenomena, Curse 1 and 2 PowerPoint slides. http://zeus.df.ufcg.edu.br/labfit/TCMFC.htm. Accessed may/2010. (2009)

  50. Farias, V.S.O.: 3D diffusion in solids with arbitrary shape using generalized coordinates. Doctoral Thesis. Process Engineering, Center of Science and Technology, Federal University of Campina Grande, Campina Grande-PB, Brazil (2011). (In Portuguese)

    Google Scholar 

  51. Farias, V.S.O., Silva, W.P., Silva, C.M.D.P.S., Lima, A.G.B.: Three-dimensional diffusion in arbitrary domain using generalized coordinates for the boundary condition of the first kind: application in drying. Defect Diff. Forum 326–328, 120–125 (2012)

    Article  Google Scholar 

  52. Beer, F.P., Johnston, E.R.J.: Vector mechanics for engineers: Static and dynamics. McGraw-Hill São Paulo, Makron (1990)

    Google Scholar 

  53. Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer. Philadelphia: Taylor & Francis, p. 792 (1997)

    Google Scholar 

  54. Ferziger, J.H, Perić M.: Computational method for fluid dynamics. Springer, Berlin (2002)

    Google Scholar 

  55. Thompson, J.F., Warsi, Z.U.A., Mastin, C.W.: Numerical Grid Generation. Elsevier Science Publishing Co, New York (1985)

    Google Scholar 

  56. Fletcher, C.A.J.: Computational techniques for fluid dynamics, vol. 2. Springer, Berlin (2003)

    Google Scholar 

  57. Silva, W.P., Silva, C.M.D.P.S., Lins, M.A.A.: Determination of expressions for the thermal diffusivity of canned foodstuffs by the inverse method and numerical simulations of heat penetration. Int. J. Food Sci. Technol. 46(4), 811–818 (2011)

    Article  Google Scholar 

  58. Silva, W.P.: Software 2D Grid Generation, V 5.1, online: http://zeus.df.ufcg.edu.br/labfit/gg.htm, Accessed december/2011. (2008)

  59. Taylor, J.R.: An Introduction to Error Analysis. University Science Books, Sausalito, California (1997)

    Google Scholar 

  60. Bairi, A., Laraqi, N.: García de María, J.M.: Determination of thermal diffusivity of foods using 1D Fourier cylindrical solution. J. Food Eng. 78(2), 669–675 (2007)

    Article  Google Scholar 

  61. Kumar, R., Kumar, A., Murthy, U.N.: Heat transfer during forced air precooling of perishable food products. Biosystems Eng. 99, 228–233 (2008)

    Article  Google Scholar 

  62. Betta, G., Rinaldi, M., Barbanti, D., Massini, R.: A quick method for thermal diffusivity estimation: Application to several foods. J. Food Eng. 91, 34–41 (2009)

    Article  CAS  Google Scholar 

  63. Silva, W.P., Silva, C.D.P.S., Gama, F.J.A.: An improved technique for determining transport parameters in cooling processes. J. Food Eng. doi:10.1016/j.jfoodeng.2012.02.003 (2012b)

  64. Mohamed, I.O.: Numerical investigation on the effect of uncertainty in thermal diffusivity on thermal process lethality of canned foods. Int. J. Food Eng. 6(6), Article 2. doi:10.2202/1556-3758.1862 (2010)

Download references

Acknowledgments

The authors would like to express their thanks to Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for supporting this work, and are also grateful to the authors of the references in this chapter that helped in the improvement of quality. Sincere thanks to Editor Prof. João M.P.Q. Delgado by the opportunity given to present our research in this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera S. O. Farias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farias, V.S.O., Silva, W.P., Silva, C.M.D.P.S., Delgado, J.M.P.Q., Farias Neto, S.R., Barbosa de Lima, A.G. (2012). Transient Diffusion in Arbitrary Shape Porous Bodies: Numerical Analysis Using Boundary-Fitted Coordinates. In: Delgado, J., de Lima, A., da Silva, M. (eds) Numerical Analysis of Heat and Mass Transfer in Porous Media. Advanced Structured Materials, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30532-0_4

Download citation

Publish with us

Policies and ethics