Advertisement

Outer Membrane Vesicles as Carriers of Biomaterials

  • S. N. ChatterjeeEmail author
  • Keya Chaudhuri
Chapter
Part of the SpringerBriefs in Microbiology book series (BRIEFSMICROBIOL)

Abstract

During their formation the outer membrane vesicles (OMVs) entrap, utilizing some special sorting mechanism, different materials from the periplasm and/or the outer membrane of the bacterial cell for purposes favoring the parent bacteria and against the survival of other competing organisms either in vitro or in vivo. These entrapped materials include different virulence factors, toxins and nontoxins, and other materials such as antibiotics and DNA that can either kill the competing organisms or change them genetically. The functions of these entrapped materials and the modes of their entrapment including the formation of engineered recombinant OMVs are briefly discussed.

Keywords

Predatory activities Toxins Virulence factors DNA Antibiotics Recombinant OMVs 

References

  1. Ashraf S, Kong W, Wang S, Yang J, Curtiss R (2011) Protective cellular responses elicited by vaccination with influenza nucleoprotein delivered by a live recombinant attenuated Salmonella vaccine. Vaccine 29:3990–4002PubMedCrossRefGoogle Scholar
  2. Ayala G, Torres L, Espinosa M, Fierros-Zarate G, Maldonado V, Melendez-Zajgla J (2006) External membrane vesicles from Helicobacter pylori induce apoptosis in gastric epithelial cells. FEMS Microbiol Lett 260:178–185PubMedCrossRefGoogle Scholar
  3. Balsalobre C, Silvan JM, Berglund S, Mizunoe Y, Uhlin BE, Wai SN (2006) Release of the type I secreted alpha-haemolysin via outer membrane vesicles from Escherichia coli. Mol Microbiol 59:99–112PubMedCrossRefGoogle Scholar
  4. Berlanda Scorza F, Doro F, Rodriguez-Ortega MJ, Stella M, Liberatori S et al (2008) Proteomics characterization of outer membrane vesicles from the extraintestinal pathogenic Escherichia coli DeltatolR IHE3034 mutant. Mol Cell Proteomics 7:473–485PubMedGoogle Scholar
  5. Bernadac A, Gavioli M, Lazzaroni JC, Raina S, Lloubes R (1998) Escherichia coli tol-pal mutants form outer membrane vesicles. J Bacteriol 180:4872–4878PubMedGoogle Scholar
  6. Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z (1997) Interactions between biofilms and the environment. FEMS Microbiol Rev 20:291–303PubMedCrossRefGoogle Scholar
  7. Chatterjee D, Chaudhuri K (2011) Association of cholera toxin with Vibrio cholerae outer membrane vesicles which are internalized by human intestinal epithelial cells. FEBS Lett 585:1357–1362PubMedCrossRefGoogle Scholar
  8. Chen DJ, Osterrieder N, Metzger SM, Buckles E, Doody AM, DeLisa MP, Putnam D (2010) Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proc Natl Acad Sci USA 107:3099–3104PubMedCrossRefGoogle Scholar
  9. Chi B, Qi M, Kuramitsu HK (2003) Role of dentilisin in Treponema denticola epithelial cell layer penetration. Res Microbiol 154:637–643PubMedCrossRefGoogle Scholar
  10. Collins BS (2011) Gram-negative outer membrane vesicles in vaccine development. Discov Med 12:7–15PubMedGoogle Scholar
  11. Deich RA, Hoyer LC (1982) Generation and release of DNA-binding vesicles by Hemophilus influenzae during induction and loss of competence. J Bacteriol 152:855–864PubMedGoogle Scholar
  12. Demuth DR, James D, Kowashi Y, Kato S (2003) Interaction of Actinobacillus actinomycetemcomitans outer membrane vesicles with HL60 cells does not require leukotoxin. Cell Microbiol 5:111–121PubMedCrossRefGoogle Scholar
  13. Dorward DW, Garon CF (1989) DNA-binding proteins in cells and membrane blebs of Neisseria gonorrhoeae. J Bacteriol 171:4196–4201PubMedGoogle Scholar
  14. Dorward DW, Garon CF, Judd RC (1989) Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J Bacteriol 171:2499–2505PubMedGoogle Scholar
  15. Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217–244PubMedCrossRefGoogle Scholar
  16. Eifler N, Vetsch M, Gregorini M, Ringler P, Chami M et al (2006) Cytotoxin ClyA from Escherichia coli assembles to a 13-meric pore independent of its redox-state. EMBO J 25:2652–2661PubMedCrossRefGoogle Scholar
  17. Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74:81–94PubMedCrossRefGoogle Scholar
  18. Galka F, Wai SN, Kusch H, Engelmann S, Hecker M et al (2008) Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 76:1825–1836PubMedCrossRefGoogle Scholar
  19. Gamage SD, McGannon CM, Weiss AA (2004) Escherichia coli serogroup O107/O117 lipopolysaccharide binds and neutralizes Shiga toxin 2. J Bacteriol 186:5506–5512PubMedCrossRefGoogle Scholar
  20. Gorringe AR, Taylor S, Brookes C, Matheson M, Finney M et al (2009) Phase I safety and immunogenicity study of a candidate meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. Clin Vaccine Immunol 16:1113–1120PubMedCrossRefGoogle Scholar
  21. Hoekstra D, van der Laan JW, de Leij L, Witholt B (1976) Release of outer membrane fragments from normally growing Escherichia coli. Biochim Biophys Acta 455:889–899PubMedCrossRefGoogle Scholar
  22. Horstman AL, Kuehn MJ (2000) Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem 275:12489–12496PubMedCrossRefGoogle Scholar
  23. Horstman AL, Kuehn MJ (2002) Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J Biol Chem 277:32538–32545PubMedCrossRefGoogle Scholar
  24. Horstman AL, Bauman SJ, Kuehn MJ (2004) Lipopolysaccharide 3-deoxy-D-manno-octulosonic acid (Kdo) core determines bacterial association of secreted toxins. J Biol Chem 279:8070–8075PubMedCrossRefGoogle Scholar
  25. Hynes SO, Keenan JI, Ferris JA, Annuk H, Moran AP (2005) Lewis epitopes on outer membrane vesicles of relevance to Helicobacter pylori pathogenesis. Helicobacter 10:146–156PubMedCrossRefGoogle Scholar
  26. Inagaki S, Onishi S, Kuramitsu HK, Sharma A (2006) Porphyromonas gingivalis vesicles enhance attachment, and the leucine-rich repeat BspA protein is required for invasion of epithelial cells by “Tannerella forsythia”. Infect Immun 74:5023–5028PubMedCrossRefGoogle Scholar
  27. Ismail S, Hampton MB, Keenan JI (2003) Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells. Infect Immun 71:5670–5675PubMedCrossRefGoogle Scholar
  28. Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008PubMedGoogle Scholar
  29. Kadurugamuwa JL, Beveridge TJ (1996) Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 178:2767–2774PubMedGoogle Scholar
  30. Kadurugamuwa JL, Beveridge TJ (1998) Delivery of the non-membrane-permeative antibiotic gentamicin into mammalian cells by using Shigella flexneri membrane vesicles. Antimicrob Agent Chemother 42:1476–1483Google Scholar
  31. Kahn ME, Maul G, Goodgal SH (1982) Possible mechanism for donor DNA binding and transport in Hemophilus. Proc Natl Acad Sci USA 79:6370–6374PubMedCrossRefGoogle Scholar
  32. Kahn ME, Barany F, Smith HO (1983) Transformasomes: specialized membranous structures that protect DNA during Hemophilus transformation. Proc Natl Acad Sci USA 80:6927–6931PubMedCrossRefGoogle Scholar
  33. Kato S, Kowashi Y, Demuth DR (2002) Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog 32:1–13PubMedCrossRefGoogle Scholar
  34. Keenan J, Day T, Neal S, Cook B, Perez–Perez G, Allardyce R, Bagshaw P (2000) A role for the bacterial outer membrane in the pathogenesis of Helicobacter pylori infection. FEMS Microbiol Lett 182:259–264PubMedCrossRefGoogle Scholar
  35. Kesty NC, Kuehn MJ (2004) Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles. J Biol Chem 279:2069–2076PubMedCrossRefGoogle Scholar
  36. Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ (2004) Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J 23:4538–4549PubMedCrossRefGoogle Scholar
  37. Khandelwal P, Banerjee-Bhatnagar N (2003) Insecticidal activity associated with the outer membrane vesicles of Xenorhabdus nematophilus. Appl Environ Microbiol 69:2032–2037PubMedCrossRefGoogle Scholar
  38. Kim JY, Doody AM, Chen DJ, Cremona GH, Shuler ML, Putnam D, DeLisa MP (2008) Engineered bacterial outer membrane vesicles with enhanced functionality. J Mol Biol 380:51–66PubMedCrossRefGoogle Scholar
  39. Kolling GL, Matthews KR (1999) Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl Environ Microbiol 65:1843–1848PubMedGoogle Scholar
  40. Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19:2645–2655PubMedCrossRefGoogle Scholar
  41. Li Z, Clarke AJ, Beveridge TJ (1996) A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J Bacteriol 178:2479–2488PubMedGoogle Scholar
  42. Li Z, Clarke AJ, Beveridge TJ (1998) Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol 180:5478–5483PubMedGoogle Scholar
  43. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425PubMedCrossRefGoogle Scholar
  44. Mashburn-Warren LM, Whiteley M (2008) Signal trafficking with bacterial outer membrane vesicles. In: Winans SC, Bassler BL (eds) Chemical communication among bacteria. ASM Press, WashingtonGoogle Scholar
  45. Masignani V, Balducci E, Di Marcello F, Savino S, Serruto D et al (2003) NarE: a novel ADP-ribosyltransferase from Neisseria meningitidis. Mol Microbiol 50:1055–1067PubMedCrossRefGoogle Scholar
  46. McBroom AJ, Kuehn MJ (2005) Outer membrane vesicles. In: RC III (ed) EcoSal - Escherichia coli and Salmonella : Cellular and Molecular Biology. American Society for Microbiology Press, WashingtonGoogle Scholar
  47. Mudrak B, Rodriguez DL, Kuehn MJ (2009) Residues of heat-labile enterotoxin involved in bacterial cell surface binding. J Bacteriol 191:2917–2925PubMedCrossRefGoogle Scholar
  48. Mug-Opstelten D, Witholt B (1978) Preferential release of new outer membrane fragments by exponentially growing Escherichia coli. Biochim Biophys Acta 508:287–295PubMedCrossRefGoogle Scholar
  49. Negrete-Abascal E, Garcia RM, Reyes ME, Godinez D, de la Garza M (2000) Membrane vesicles released by Actinobacillus pleuropneumoniae contain proteases and Apx toxins. FEMS Microbiol Lett 191:109–113PubMedCrossRefGoogle Scholar
  50. Nowotny A, Behling UH, Hammond B, Lai CH, Listgarten M, Pham PH, Sanavi F (1982) Release of toxic microvesicles by Actinobacillus actinomycetemcomitans. Infect Immun 37:151–154PubMedGoogle Scholar
  51. Ohta H, Kato K, Kokeguchi S, Hara H, Fukui K, Murayama Y (1991) Nuclease-sensitive binding of an Actinobacillus actinomycetemcomitans leukotoxin to the bacterial cell surface. Infect Immun 59:4599–4605PubMedGoogle Scholar
  52. Ohta H, Hara H, Fukui K, Kurihara H, Murayama Y, Kato K (1993) Association of Actinobacillus actinomycetemcomitans leukotoxin with nucleic acids on the bacterial cell surface. Infect Immun 61:4878–4884PubMedGoogle Scholar
  53. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234PubMedCrossRefGoogle Scholar
  54. Renelli M, Matias V, Lo RY, Beveridge TJ (2004) DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150:2161–2169PubMedCrossRefGoogle Scholar
  55. Ricci V, Chiozzi V, Necchi V, Oldani A, Romano M, Solcia E, Ventura U (2005) Free-soluble and outer membrane vesicle-associated VacA from Helicobacter pylori: Two forms of release, a different activity. Biochem Biophys Res Commun 337:173–178PubMedCrossRefGoogle Scholar
  56. Rolhion N, Barnich N, Claret L, Darfeuille-Michaud A (2005) Strong decrease in invasive ability and outer membrane vesicle release in Crohn’s disease-associated adherent-invasive Escherichia coli strain LF82 with the yfgL gene deleted. J Bacteriol 187:2286–2296PubMedCrossRefGoogle Scholar
  57. Rosen G, Naor R, Rahamim E, Yishai R, Sela MN (1995) Proteases of Treponema denticola outer sheath and extracellular vesicles. Infect Immun 63:3973–3979PubMedGoogle Scholar
  58. Roy N, Barman S, Ghosh A, Pal A, Chakraborty K et al (2010) Immunogenicity and protective efficacy of Vibrio cholerae outer membrane vesicles in rabbit model. FEMS Immunol Med Microbiol 60:18–27PubMedCrossRefGoogle Scholar
  59. Schlichting E, Lyberg T, Solberg O, Andersen BM (1993) Endotoxin liberation from Neisseria meningitidis correlates to their ability to induce procoagulant and fibrinolytic factors in human monocytes. Scand J Infect Dis 25:585–594PubMedCrossRefGoogle Scholar
  60. Schroeder J, Aebischer T (2009) Recombinant outer membrane vesicles to augment antigen-specific live vaccine responses. Vaccine 27:6748–6754PubMedCrossRefGoogle Scholar
  61. Sidhu VK, Vorholter FJ, Niehaus K, Watt SA (2008) Analysis of outer membrane vesicle associated proteins isolated from the plant pathogenic bacterium Xanthomonas campestris pv. campestris. BMC Microbiol 8:87PubMedCrossRefGoogle Scholar
  62. Tan TT, Morgelin M, Forsgren A, Riesbeck K (2007) Hemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. J Infect Dis 195:1661–1670PubMedCrossRefGoogle Scholar
  63. Tzokov SB, Wyborn NR, Stillman TJ, Jamieson S, Czudnochowski N et al (2006) Structure of the hemolysin E (HlyE, ClyA, and SheA) channel in its membrane-bound form. J Biol Chem 281:23042–23049PubMedCrossRefGoogle Scholar
  64. Vasilyeva NV, Tsfasman IM, Suzina NE, Stepnaya OA, Kulaev IS (2008) Secretion of bacteriolytic endopeptidase L5 of Lysobacter sp. XL1 into the medium by means of outer membrane vesicles. FEBS J 275:3827–3835PubMedCrossRefGoogle Scholar
  65. Wai SN, Lindmark B, Soderblom T, Takade A, Westermark M et al (2003) Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115:25–35PubMedCrossRefGoogle Scholar
  66. Wallace AJ, Stillman TJ, Atkins A, Jamieson SJ, Bullough PA, Green J, Artymiuk PJ (2000) E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy. Cell 100:265–276PubMedCrossRefGoogle Scholar
  67. Yaron S, Kolling GL, Simon L, Matthews KR (2000) Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl Environ Microbiol 66:4414–4420PubMedCrossRefGoogle Scholar
  68. Yokoyama K, Horii T, Yamashino T, Hashikawa S, Barua S et al (2000) Production of shiga toxin by Escherichia coli measured with reference to the membrane vesicle-associated toxins. FEMS Microbiol Lett 192:139–144PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.BiophysicsFormerly of Saha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Molecular and Human Genetics DivisionIndian Institute of Chemical BiologyKolkataIndia

Personalised recommendations