Skip to main content

Factors Affecting Production of Outer Membrane Vesicles

  • Chapter
  • First Online:
Outer Membrane Vesicles of Bacteria

Part of the book series: SpringerBriefs in Microbiology ((BRIEFSMICROBIOL))

  • 1236 Accesses

Abstract

The production of outer membrane vesicles (OMVs) by Gram-negative bacteria is influenced by many different factors. Pathogenic bacteria produce more OMVs than the non-pathogenic ones and OMVs are also produced within the infected hosts. The amount of OMVs produced under different growth conditions varies, and the structure of LPS on the outer membrane significantly influences OMV production. Bacteria treated with antibiotics such as gentamicin produce numerous OMVs that are different from the native OMVs in structure and chemical composition. Similarly, bacteria under stress also produce more OMVs. Thus the OMVs are produced to favor the growth and survival of the parent bacteria under challenging conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alba BM, Gross CA (2004) Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 52:613–619

    Article  PubMed  CAS  Google Scholar 

  • Allan ND, Beveridge TJ (2003) Gentamicin delivery to Burkholderia cepacia group IIIa strains via membrane vesicles from Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 47:2962–2965

    Article  PubMed  CAS  Google Scholar 

  • Ames GF, Spudich EN, Nikaido H (1974) Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations. J Bacteriol 117:406–416

    PubMed  CAS  Google Scholar 

  • Avakian AA, Sinel’nikova MP, Pereverzev NA, Gurskii IuN (1972) Electron microscopic study of biopsied sections of small intestine mucosa in patients with cholera and characteristics of the ultrastructure of causative agents of cholera in relation to toxinogenesis. Zh Mikrobiol Epidemiol Immunobiol 49:86–92

    PubMed  CAS  Google Scholar 

  • Bauman SJ, Kuehn MJ (2006) Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect 8:2400–2408

    Article  PubMed  CAS  Google Scholar 

  • Beermann C, Wunderli-Allenspach H, Groscurth P, Filgueira L (2000) Lipoproteins from Borrelia burgdorferi applied in liposomes and presented by dendritic cells induce CD8(+) T-lymphocytes in vitro. Cell Immunol 201:124–131

    Article  PubMed  CAS  Google Scholar 

  • Bergman MA, Cummings LA, Barrett SL, Smith KD, Lara JC, Aderem A, Cookson BT (2005) CD4 + T cells and toll-like receptors recognize Salmonella antigens expressed in bacterial surface organelles. Infect Immun 73:1350–1356

    Article  PubMed  CAS  Google Scholar 

  • Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733

    PubMed  CAS  Google Scholar 

  • Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z (1997) Interactions between biofilms and the environment. FEMS Microbiol Rev 20:291–303

    Article  PubMed  CAS  Google Scholar 

  • Bjerre A, Brusletto B, Rosenqvist E, Namork E, Kierulf P et al (2000) Cellular activating properties and morphology of membrane-bound and purified meningococcal lipopolysaccharide. J Endotoxin Res 6:437–445

    PubMed  CAS  Google Scholar 

  • Brandtzaeg P, Bryn K, Kierulf P, Ovstebo R, Namork E, Aase B, Jantzen E (1992) Meningococcal endotoxin in lethal septic shock plasma studied by gas chromatography, mass-spectrometry, ultracentrifugation, and electron microscopy. J Clin Invest 89:816–823

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee SN, Das J (1966) Secretory activity of Vibrio cholerae as evidenced by electron microscopy. In: Uyeda R (ed) Electron Microscopy 1966. Maruzen Co. Ltd, Tokyo

    Google Scholar 

  • Chatterjee SN, Das J (1967) Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J Gen Microbiol 49:1–11

    Article  PubMed  CAS  Google Scholar 

  • Craven DE, Peppler MS, Frasch CE, Mocca LF, McGrath PP, Washington G (1980) Adherence of isolates of Neisseria meningitidis from patients and carriers to human buccal epithelial cells. J Infect Dis 142:556–568

    Article  PubMed  CAS  Google Scholar 

  • De Las Penas A, Connolly L, Gross CA (1997) SigmaE is an essential sigma factor in Escherichia coli. J Bacteriol 179:6862–6864

    PubMed  Google Scholar 

  • Deatherage BL, Lara JC, Bergsbaken T, Rassoulian Barrett SL, Lara S, Cookson BT (2009) Biogenesis of bacterial membrane vesicles. Mol Microbiol 72:1395–1407

    Article  PubMed  CAS  Google Scholar 

  • Devoe IW, Gilchrist JE (1973) Release of endotoxin in the form of cell wall blebs during in vitro growth of Neisseria meningitidis. J Exp Med 138:1156–1167

    Article  PubMed  CAS  Google Scholar 

  • Dorward DW, Garon CF (1989) DNA-binding proteins in cells and membrane blebs of Neisseria gonorrhoeae. J Bacteriol 171:4196–4201

    PubMed  CAS  Google Scholar 

  • Dorward DW, Garon CF, Judd RC (1989) Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J Bacteriol 171:2499–2505

    PubMed  CAS  Google Scholar 

  • Dorward DW, Schwan TG, Garon CF (1991) Immune capture and detection of Borrelia burgdorferi antigens in urine, blood, or tissues from infected ticks, mice, dogs, and humans. J Clin Microbiol 29:1162–1170

    PubMed  CAS  Google Scholar 

  • Dutta S, Iida K, Takade A, Meno Y, Nair GB, Yoshida S (2004) Release of Shiga toxin by membrane vesicles in Shigella dysenteriae serotype 1 strains and in vitro effects of antimicrobials on toxin production and release. Microbiol Immunol 48:965–969

    PubMed  CAS  Google Scholar 

  • Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74:81–94

    Article  PubMed  CAS  Google Scholar 

  • Fiocca R, Necchi V, Sommi P, Ricci V, Telford J, Cover TL, Solcia E (1999) Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J Pathol 188:220–226

    Article  PubMed  CAS  Google Scholar 

  • Galka F, Wai SN, Kusch H, Engelmann S, Hecker M et al (2008) Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 76:1825–1836

    Article  PubMed  CAS  Google Scholar 

  • Gamazo C, Moriyon I (1987) Release of outer membrane fragments by exponentially growing Brucella melitensis cells. Infect Immun 55:609–615

    PubMed  CAS  Google Scholar 

  • Gankema H, Wensink J, Guinee PA, Jansen WH, Witholt B (1980) Some characteristics of the outer membrane material released by growing enterotoxigenic Escherichia coli. Infect Immun 29:704–713

    PubMed  CAS  Google Scholar 

  • Garcia-del Portillo F, Stein MA, Finlay BB (1997) Release of lipopolysaccharide from intracellular compartments containing Salmonella typhimurium to vesicles of the host epithelial cell. Infect Immun 65:24–34

    PubMed  CAS  Google Scholar 

  • Grenier D, Mayrand D (1987) Functional characterization of extracellular vesicles produced by Bacteroides gingivalis. Infect Immun 55:111–117

    PubMed  CAS  Google Scholar 

  • Halhoul N, Colvin JR (1975) The ultrastructure of bacterial plaque attached to the gingiva of man. Arch Oral Biol 20:115–118

    Article  PubMed  CAS  Google Scholar 

  • Heczko U, Smith VC, Mark Meloche R, Buchan AM, Finlay BB (2000) Characteristics of Helicobacter pylori attachment to human primary antral epithelial cells. Microbes Infect 2:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra D, van der Laan JW, de Leij L, Witholt B (1976) Release of outer membrane fragments from normally growing Escherichia coli. Biochim Biophys Acta 455:889–899

    Article  PubMed  CAS  Google Scholar 

  • Horstman AL, Kuehn MJ (2002) Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J Biol Chem 277:32538–32545

    Article  PubMed  CAS  Google Scholar 

  • Iwanaga M, Naito T (1979) Morphological changes of Vibrio cholerae during toxin production. Trop Med 21:187–196

    Google Scholar 

  • Iwanaga M, Naito T (1980) Toxin production and morphological changes of Vibrio cholerae in the medium for inducing pleomorphism. Trop Med 22:61–68

    Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008

    PubMed  CAS  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1996) Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 178:2767–2774

    PubMed  CAS  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1997) Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J Antimicrob Chemother 40:615–621

    Article  PubMed  CAS  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1998) Delivery of the non-membrane-permeative antibiotic gentamicin into mammalian cells by using Shigella flexneri membrane vesicles. Antimicrob Agents Chemother 42:1476–1483

    PubMed  CAS  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1999) Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other gram-negative bacteria. Microbiology 145(Pt 8):2051–2060

    Article  PubMed  CAS  Google Scholar 

  • Keenan JI, Allardyce RA (2000) Iron influences the expression of Helicobacter pylori outer membrane vesicle-associated virulence factors. Eur J Gastroenterol Hepatol 12:1267–1273

    Article  PubMed  CAS  Google Scholar 

  • Keenan J, Day T, Neal S, Cook B, Perez-Perez G, Allardyce R, Bagshaw P (2000) A role for the bacterial outer membrane in the pathogenesis of Helicobacter pylori infection. FEMS Microbiol Lett 182:259–264

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Uematsu K, Hirayama H, Horikoshi K (2000) Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol 182:6451–6455

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Takade A, Amako K (1993) Release of the outer membrane vesicles from Vibrio cholerae and Vibrio parahaemolyticus. Microbiol Immunol 37:149–152

    PubMed  CAS  Google Scholar 

  • Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19:2645–2655

    Article  PubMed  CAS  Google Scholar 

  • Lai CH, Listgarten MA, Hammond BF (1981) Comparative ultrastructure of leukotoxic and non-leukotoxic strains of Actinobacillus actinomycetemcomitans. J Periodontal Res 16:379–389

    Article  PubMed  CAS  Google Scholar 

  • Lerouge I, Vanderleyden J (2002) O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 26:17–47

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Clarke AJ, Beveridge TJ (1996) A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J Bacteriol 178:2479–2488

    PubMed  CAS  Google Scholar 

  • Li Z, Clarke AJ, Beveridge TJ (1998) Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol 180:5478–5483

    PubMed  CAS  Google Scholar 

  • Loeb MR (1974) Bacteriophage T4-mediated release of envelope components from Escherichia coli. J Virol 13:631–641

    PubMed  CAS  Google Scholar 

  • Loeb MR, Kilner J (1978) Release of a special fraction of the outer membrane from both growing and phage T4-infected Escherichia coli B. Biochim Biophys Acta 514:117–127

    Article  PubMed  CAS  Google Scholar 

  • Mayrand D, Grenier D (1989) Biological activities of outer membrane vesicles. Can J Microbiol 35:607–613

    Article  PubMed  CAS  Google Scholar 

  • Mayrand D, Holt SC (1988) Biology of asaccharolytic black-pigmented Bacteroides species. Microbiol Rev 52:134–152

    PubMed  CAS  Google Scholar 

  • McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63:545–558

    Article  PubMed  CAS  Google Scholar 

  • McBroom AJ, Johnson AP, Vemulapalli S, Kuehn MJ (2006) Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J Bacteriol 188:5385–5392

    Article  PubMed  CAS  Google Scholar 

  • Meadow PM, Wells PL, Salkinoja-Salonen M, NE L (1978) The effect of lipopolysaccharide composition on the ultrastructure of Pseudomonas aeruginosa. J Gen Microbiol 105:23–28

    Article  CAS  Google Scholar 

  • Mug-Opstelten D, Witholt B (1978) Preferential release of new outer membrane fragments by exponentially growing Escherichia coli. Biochim Biophys Acta 508:287–295

    Article  PubMed  CAS  Google Scholar 

  • Namork E, Brandtzaeg P (2002) Fatal meningococcal septicaemia with “blebbing” meningococcus. Lancet 360:1741

    Article  PubMed  Google Scholar 

  • Nguyen TT, Saxena A, Beveridge TJ (2003) Effect of surface lipopolysaccharide on the nature of membrane vesicles liberated from the gram-negative bacterium Pseudomonas aeruginosa. J Electron Microsc (Tokyo) 52:465–469

    Article  CAS  Google Scholar 

  • Nowotny A, Behling UH, Hammond B, Lai CH, Listgarten M, Pham PH, Sanavi F (1982) Release of toxic microvesicles by Actinobacillus actinomycetemcomitans. Infect Immun 37:151–154

    PubMed  CAS  Google Scholar 

  • Pier GB (2000) Peptides, Pseudomonas aeruginosa, polysaccharides and lipopolysaccharides–players in the predicament of cystic fibrosis patients. Trends Microbiol 8:247–250; discussion 250–241

    Google Scholar 

  • Raivio TL (2005) Envelope stress responses and gram-negative bacterial pathogenesis. Mol Microbiol 56:1119–1128

    Article  PubMed  CAS  Google Scholar 

  • Sabra W, Lunsdorf H, Zeng AP (2003) Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 149:2789–2795

    Article  PubMed  CAS  Google Scholar 

  • Schnaitman CA, Klena JD (1993) Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 57:655–682

    PubMed  CAS  Google Scholar 

  • Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–5957

    Article  PubMed  CAS  Google Scholar 

  • Shoberg RJ, Thomas DD (1993) Specific adherence of Borrelia burgdorferi extracellular vesicles to human endothelial cells in culture. Infect Immun 61:3892–3900

    PubMed  CAS  Google Scholar 

  • Smit J, Kamio Y, Nikaido H (1975) Outer membrane of Salmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants. J Bacteriol 124:942–958

    PubMed  CAS  Google Scholar 

  • Song T, Mika F, Lindmark B, Liu Z, Schild S et al (2008) A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol Microbiol 70:100–111

    Article  PubMed  CAS  Google Scholar 

  • Stephens DS, Edwards KM, Morris F, McGee ZA (1982) Pili and outer membrane appendages on Neisseria meningitidis in the cerebrospinal fluid of an infant. J Infect Dis 146:568

    Article  PubMed  CAS  Google Scholar 

  • Stirling P, Richmond SJ (1980) Production of outer membrane blebs during chlamydial replication. FEMS Microbiol Lett 9:103–105

    Article  Google Scholar 

  • Tetz VV, Rybalchenko OV, Savkova GA (1990) Ultrastructural features of microbial colony organization. J Basic Microbiol 30:597–607

    Article  PubMed  CAS  Google Scholar 

  • Unal CM, Schaar V, Riesbeck K (2010) Bacterial outer membrane vesicles in disease and preventive medicine. Semin Immunopathol 33:395–408

    Article  PubMed  Google Scholar 

  • Vesy CJ, Kitchens RL, Wolfbauer G, Albers JJ, Munford RS (2000) Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from gram-negative bacterial membranes. Infect Immun 68:2410–2417

    Article  PubMed  CAS  Google Scholar 

  • Wai SN, Takade A, Amako K (1995) The release of outer membrane vesicles from the strains of enterotoxigenic Escherichia coli. Microbiol Immunol 39:451–456

    PubMed  CAS  Google Scholar 

  • Wai SN, Lindmark B, Soderblom T, Takade A, Westermark M et al (2003) Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115:25–35

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H et al (2009) Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol 9:197

    Article  PubMed  Google Scholar 

  • Zhou L, Srisatjaluk R, Justus DE, Doyle RJ (1998) On the origin of membrane vesicles in gram-negative bacteria. FEMS Microbiol Lett 163:223–228

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S N Chatterjee .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Chatterjee, S.N., Chaudhuri, K. (2012). Factors Affecting Production of Outer Membrane Vesicles. In: Outer Membrane Vesicles of Bacteria. SpringerBriefs in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30526-9_3

Download citation

Publish with us

Policies and ethics