Factors Affecting Production of Outer Membrane Vesicles

  • S N ChatterjeeEmail author
  • Keya Chaudhuri
Part of the SpringerBriefs in Microbiology book series (BRIEFSMICROBIOL)


The production of outer membrane vesicles (OMVs) by Gram-negative bacteria is influenced by many different factors. Pathogenic bacteria produce more OMVs than the non-pathogenic ones and OMVs are also produced within the infected hosts. The amount of OMVs produced under different growth conditions varies, and the structure of LPS on the outer membrane significantly influences OMV production. Bacteria treated with antibiotics such as gentamicin produce numerous OMVs that are different from the native OMVs in structure and chemical composition. Similarly, bacteria under stress also produce more OMVs. Thus the OMVs are produced to favor the growth and survival of the parent bacteria under challenging conditions.


Natural and unnatural OMVs Pathogenic and non-pathogenic bacteria Growth conditions LPS structure Infected host Antibiotic treatment Stress response 


  1. Alba BM, Gross CA (2004) Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 52:613–619PubMedCrossRefGoogle Scholar
  2. Allan ND, Beveridge TJ (2003) Gentamicin delivery to Burkholderia cepacia group IIIa strains via membrane vesicles from Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 47:2962–2965PubMedCrossRefGoogle Scholar
  3. Ames GF, Spudich EN, Nikaido H (1974) Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations. J Bacteriol 117:406–416PubMedGoogle Scholar
  4. Avakian AA, Sinel’nikova MP, Pereverzev NA, Gurskii IuN (1972) Electron microscopic study of biopsied sections of small intestine mucosa in patients with cholera and characteristics of the ultrastructure of causative agents of cholera in relation to toxinogenesis. Zh Mikrobiol Epidemiol Immunobiol 49:86–92PubMedGoogle Scholar
  5. Bauman SJ, Kuehn MJ (2006) Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect 8:2400–2408PubMedCrossRefGoogle Scholar
  6. Beermann C, Wunderli-Allenspach H, Groscurth P, Filgueira L (2000) Lipoproteins from Borrelia burgdorferi applied in liposomes and presented by dendritic cells induce CD8(+) T-lymphocytes in vitro. Cell Immunol 201:124–131PubMedCrossRefGoogle Scholar
  7. Bergman MA, Cummings LA, Barrett SL, Smith KD, Lara JC, Aderem A, Cookson BT (2005) CD4 + T cells and toll-like receptors recognize Salmonella antigens expressed in bacterial surface organelles. Infect Immun 73:1350–1356PubMedCrossRefGoogle Scholar
  8. Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733PubMedGoogle Scholar
  9. Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z (1997) Interactions between biofilms and the environment. FEMS Microbiol Rev 20:291–303PubMedCrossRefGoogle Scholar
  10. Bjerre A, Brusletto B, Rosenqvist E, Namork E, Kierulf P et al (2000) Cellular activating properties and morphology of membrane-bound and purified meningococcal lipopolysaccharide. J Endotoxin Res 6:437–445PubMedGoogle Scholar
  11. Brandtzaeg P, Bryn K, Kierulf P, Ovstebo R, Namork E, Aase B, Jantzen E (1992) Meningococcal endotoxin in lethal septic shock plasma studied by gas chromatography, mass-spectrometry, ultracentrifugation, and electron microscopy. J Clin Invest 89:816–823PubMedCrossRefGoogle Scholar
  12. Chatterjee SN, Das J (1966) Secretory activity of Vibrio cholerae as evidenced by electron microscopy. In: Uyeda R (ed) Electron Microscopy 1966. Maruzen Co. Ltd, Tokyo Google Scholar
  13. Chatterjee SN, Das J (1967) Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J Gen Microbiol 49:1–11PubMedCrossRefGoogle Scholar
  14. Craven DE, Peppler MS, Frasch CE, Mocca LF, McGrath PP, Washington G (1980) Adherence of isolates of Neisseria meningitidis from patients and carriers to human buccal epithelial cells. J Infect Dis 142:556–568PubMedCrossRefGoogle Scholar
  15. De Las Penas A, Connolly L, Gross CA (1997) SigmaE is an essential sigma factor in Escherichia coli. J Bacteriol 179:6862–6864PubMedGoogle Scholar
  16. Deatherage BL, Lara JC, Bergsbaken T, Rassoulian Barrett SL, Lara S, Cookson BT (2009) Biogenesis of bacterial membrane vesicles. Mol Microbiol 72:1395–1407PubMedCrossRefGoogle Scholar
  17. Devoe IW, Gilchrist JE (1973) Release of endotoxin in the form of cell wall blebs during in vitro growth of Neisseria meningitidis. J Exp Med 138:1156–1167PubMedCrossRefGoogle Scholar
  18. Dorward DW, Garon CF (1989) DNA-binding proteins in cells and membrane blebs of Neisseria gonorrhoeae. J Bacteriol 171:4196–4201PubMedGoogle Scholar
  19. Dorward DW, Garon CF, Judd RC (1989) Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J Bacteriol 171:2499–2505PubMedGoogle Scholar
  20. Dorward DW, Schwan TG, Garon CF (1991) Immune capture and detection of Borrelia burgdorferi antigens in urine, blood, or tissues from infected ticks, mice, dogs, and humans. J Clin Microbiol 29:1162–1170PubMedGoogle Scholar
  21. Dutta S, Iida K, Takade A, Meno Y, Nair GB, Yoshida S (2004) Release of Shiga toxin by membrane vesicles in Shigella dysenteriae serotype 1 strains and in vitro effects of antimicrobials on toxin production and release. Microbiol Immunol 48:965–969PubMedGoogle Scholar
  22. Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74:81–94PubMedCrossRefGoogle Scholar
  23. Fiocca R, Necchi V, Sommi P, Ricci V, Telford J, Cover TL, Solcia E (1999) Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J Pathol 188:220–226PubMedCrossRefGoogle Scholar
  24. Galka F, Wai SN, Kusch H, Engelmann S, Hecker M et al (2008) Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 76:1825–1836PubMedCrossRefGoogle Scholar
  25. Gamazo C, Moriyon I (1987) Release of outer membrane fragments by exponentially growing Brucella melitensis cells. Infect Immun 55:609–615PubMedGoogle Scholar
  26. Gankema H, Wensink J, Guinee PA, Jansen WH, Witholt B (1980) Some characteristics of the outer membrane material released by growing enterotoxigenic Escherichia coli. Infect Immun 29:704–713PubMedGoogle Scholar
  27. Garcia-del Portillo F, Stein MA, Finlay BB (1997) Release of lipopolysaccharide from intracellular compartments containing Salmonella typhimurium to vesicles of the host epithelial cell. Infect Immun 65:24–34PubMedGoogle Scholar
  28. Grenier D, Mayrand D (1987) Functional characterization of extracellular vesicles produced by Bacteroides gingivalis. Infect Immun 55:111–117PubMedGoogle Scholar
  29. Halhoul N, Colvin JR (1975) The ultrastructure of bacterial plaque attached to the gingiva of man. Arch Oral Biol 20:115–118PubMedCrossRefGoogle Scholar
  30. Heczko U, Smith VC, Mark Meloche R, Buchan AM, Finlay BB (2000) Characteristics of Helicobacter pylori attachment to human primary antral epithelial cells. Microbes Infect 2:1669–1676PubMedCrossRefGoogle Scholar
  31. Hoekstra D, van der Laan JW, de Leij L, Witholt B (1976) Release of outer membrane fragments from normally growing Escherichia coli. Biochim Biophys Acta 455:889–899PubMedCrossRefGoogle Scholar
  32. Horstman AL, Kuehn MJ (2002) Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J Biol Chem 277:32538–32545PubMedCrossRefGoogle Scholar
  33. Iwanaga M, Naito T (1979) Morphological changes of Vibrio cholerae during toxin production. Trop Med 21:187–196Google Scholar
  34. Iwanaga M, Naito T (1980) Toxin production and morphological changes of Vibrio cholerae in the medium for inducing pleomorphism. Trop Med 22:61–68Google Scholar
  35. Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008PubMedGoogle Scholar
  36. Kadurugamuwa JL, Beveridge TJ (1996) Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 178:2767–2774PubMedGoogle Scholar
  37. Kadurugamuwa JL, Beveridge TJ (1997) Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J Antimicrob Chemother 40:615–621PubMedCrossRefGoogle Scholar
  38. Kadurugamuwa JL, Beveridge TJ (1998) Delivery of the non-membrane-permeative antibiotic gentamicin into mammalian cells by using Shigella flexneri membrane vesicles. Antimicrob Agents Chemother 42:1476–1483PubMedGoogle Scholar
  39. Kadurugamuwa JL, Beveridge TJ (1999) Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other gram-negative bacteria. Microbiology 145(Pt 8):2051–2060PubMedCrossRefGoogle Scholar
  40. Keenan JI, Allardyce RA (2000) Iron influences the expression of Helicobacter pylori outer membrane vesicle-associated virulence factors. Eur J Gastroenterol Hepatol 12:1267–1273PubMedCrossRefGoogle Scholar
  41. Keenan J, Day T, Neal S, Cook B, Perez-Perez G, Allardyce R, Bagshaw P (2000) A role for the bacterial outer membrane in the pathogenesis of Helicobacter pylori infection. FEMS Microbiol Lett 182:259–264PubMedCrossRefGoogle Scholar
  42. Kobayashi H, Uematsu K, Hirayama H, Horikoshi K (2000) Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol 182:6451–6455PubMedCrossRefGoogle Scholar
  43. Kondo K, Takade A, Amako K (1993) Release of the outer membrane vesicles from Vibrio cholerae and Vibrio parahaemolyticus. Microbiol Immunol 37:149–152PubMedGoogle Scholar
  44. Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19:2645–2655PubMedCrossRefGoogle Scholar
  45. Lai CH, Listgarten MA, Hammond BF (1981) Comparative ultrastructure of leukotoxic and non-leukotoxic strains of Actinobacillus actinomycetemcomitans. J Periodontal Res 16:379–389PubMedCrossRefGoogle Scholar
  46. Lerouge I, Vanderleyden J (2002) O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 26:17–47PubMedCrossRefGoogle Scholar
  47. Li Z, Clarke AJ, Beveridge TJ (1996) A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J Bacteriol 178:2479–2488PubMedGoogle Scholar
  48. Li Z, Clarke AJ, Beveridge TJ (1998) Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol 180:5478–5483PubMedGoogle Scholar
  49. Loeb MR (1974) Bacteriophage T4-mediated release of envelope components from Escherichia coli. J Virol 13:631–641PubMedGoogle Scholar
  50. Loeb MR, Kilner J (1978) Release of a special fraction of the outer membrane from both growing and phage T4-infected Escherichia coli B. Biochim Biophys Acta 514:117–127PubMedCrossRefGoogle Scholar
  51. Mayrand D, Grenier D (1989) Biological activities of outer membrane vesicles. Can J Microbiol 35:607–613PubMedCrossRefGoogle Scholar
  52. Mayrand D, Holt SC (1988) Biology of asaccharolytic black-pigmented Bacteroides species. Microbiol Rev 52:134–152PubMedGoogle Scholar
  53. McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63:545–558PubMedCrossRefGoogle Scholar
  54. McBroom AJ, Johnson AP, Vemulapalli S, Kuehn MJ (2006) Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J Bacteriol 188:5385–5392PubMedCrossRefGoogle Scholar
  55. Meadow PM, Wells PL, Salkinoja-Salonen M, NE L (1978) The effect of lipopolysaccharide composition on the ultrastructure of Pseudomonas aeruginosa. J Gen Microbiol 105:23–28CrossRefGoogle Scholar
  56. Mug-Opstelten D, Witholt B (1978) Preferential release of new outer membrane fragments by exponentially growing Escherichia coli. Biochim Biophys Acta 508:287–295PubMedCrossRefGoogle Scholar
  57. Namork E, Brandtzaeg P (2002) Fatal meningococcal septicaemia with “blebbing” meningococcus. Lancet 360:1741PubMedCrossRefGoogle Scholar
  58. Nguyen TT, Saxena A, Beveridge TJ (2003) Effect of surface lipopolysaccharide on the nature of membrane vesicles liberated from the gram-negative bacterium Pseudomonas aeruginosa. J Electron Microsc (Tokyo) 52:465–469CrossRefGoogle Scholar
  59. Nowotny A, Behling UH, Hammond B, Lai CH, Listgarten M, Pham PH, Sanavi F (1982) Release of toxic microvesicles by Actinobacillus actinomycetemcomitans. Infect Immun 37:151–154PubMedGoogle Scholar
  60. Pier GB (2000) Peptides, Pseudomonas aeruginosa, polysaccharides and lipopolysaccharides–players in the predicament of cystic fibrosis patients. Trends Microbiol 8:247–250; discussion 250–241Google Scholar
  61. Raivio TL (2005) Envelope stress responses and gram-negative bacterial pathogenesis. Mol Microbiol 56:1119–1128PubMedCrossRefGoogle Scholar
  62. Sabra W, Lunsdorf H, Zeng AP (2003) Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 149:2789–2795PubMedCrossRefGoogle Scholar
  63. Schnaitman CA, Klena JD (1993) Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 57:655–682PubMedGoogle Scholar
  64. Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–5957PubMedCrossRefGoogle Scholar
  65. Shoberg RJ, Thomas DD (1993) Specific adherence of Borrelia burgdorferi extracellular vesicles to human endothelial cells in culture. Infect Immun 61:3892–3900PubMedGoogle Scholar
  66. Smit J, Kamio Y, Nikaido H (1975) Outer membrane of Salmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants. J Bacteriol 124:942–958PubMedGoogle Scholar
  67. Song T, Mika F, Lindmark B, Liu Z, Schild S et al (2008) A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol Microbiol 70:100–111PubMedCrossRefGoogle Scholar
  68. Stephens DS, Edwards KM, Morris F, McGee ZA (1982) Pili and outer membrane appendages on Neisseria meningitidis in the cerebrospinal fluid of an infant. J Infect Dis 146:568PubMedCrossRefGoogle Scholar
  69. Stirling P, Richmond SJ (1980) Production of outer membrane blebs during chlamydial replication. FEMS Microbiol Lett 9:103–105CrossRefGoogle Scholar
  70. Tetz VV, Rybalchenko OV, Savkova GA (1990) Ultrastructural features of microbial colony organization. J Basic Microbiol 30:597–607PubMedCrossRefGoogle Scholar
  71. Unal CM, Schaar V, Riesbeck K (2010) Bacterial outer membrane vesicles in disease and preventive medicine. Semin Immunopathol 33:395–408PubMedCrossRefGoogle Scholar
  72. Vesy CJ, Kitchens RL, Wolfbauer G, Albers JJ, Munford RS (2000) Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from gram-negative bacterial membranes. Infect Immun 68:2410–2417PubMedCrossRefGoogle Scholar
  73. Wai SN, Takade A, Amako K (1995) The release of outer membrane vesicles from the strains of enterotoxigenic Escherichia coli. Microbiol Immunol 39:451–456PubMedGoogle Scholar
  74. Wai SN, Lindmark B, Soderblom T, Takade A, Westermark M et al (2003) Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115:25–35PubMedCrossRefGoogle Scholar
  75. Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H et al (2009) Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol 9:197PubMedCrossRefGoogle Scholar
  76. Zhou L, Srisatjaluk R, Justus DE, Doyle RJ (1998) On the origin of membrane vesicles in gram-negative bacteria. FEMS Microbiol Lett 163:223–228PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.BiophysicsFormerly of Saha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Molecular and Human Genetics DivisionIndian Institute of Chemical BiologyKolkataIndia

Personalised recommendations