Skip to main content

Winds in Complex Terrain

  • Chapter
  • First Online:
Wind Energy Meteorology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This Chapter introduces into flow features and wind and turbulence profiles over hilly and complex terrain. Analytical solutions for potential flow are derived in order to illustrate the major flow features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allnoch, N.: Windkraftnutzung im nordwestdeutschen Binnenland: Ein System zur Standortbewertung für Windkraftanlagen. Geographische Kommission für Westfalen, Münster, ARDEY-Verlag, 160 pp. (1992).

    Google Scholar 

  • Anderson P.S., Ladkin R.S., Renfrew I.A.: An Autonomous Doppler Sodar Wind Profiling System. J. Atmos. Oceanic Technol. 22, 1309–1325 (2005).

    Google Scholar 

  • Astley, R.J.: A Finite Element Frozen Vorticity Solution for Two-Dimensional Wind Flow over Hills. 6th Australasian Conf. on Hydraulics and FIuid Mechanics, Adelaide, Australia, 443–446 (1977).

    Google Scholar 

  • Atkinson B.W.: Meso-scale Atmospheric Circulations. Academic Press, London etc., 495 pp. (1981).

    Google Scholar 

  • Bowen, A.J., D. Lindley,: A Wind-Tunnel Investigation of the Wind Speed and Turbulence Characteristics Close to the Ground over Various Escarpment Shapes. Bound.-Layer Meteorol. 12, 259–271 (1977).

    Google Scholar 

  • Bowen, A.J.: Full Scale Measurements of the Atmospheric Turbulence over Two Escarpments. In: J.E. Cermak (ed.), Wind Engineering: Proc. 5th Internat. Conf., Fort Collins, Pergamon, 161–172 (1979).

    Google Scholar 

  • Bradley, E. F.: The Influence of Thermal Stability and Angle of Incidence on the Acceleration of Wind up a Slope. J. Wind Eng. Indust. Aerodynam. 15, 231–242 (1983).

    Google Scholar 

  • Caccia, J.-L., Guénard, V., Benech, B., Campistron, B., Drobinski, P.: Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers. Ann. Geophysicae 22, 3927–3936 (2004).

    Google Scholar 

  • Defant, F.: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch. Meteorol. Geophys. Bioklimatol. A 1, 421–450 (1949).

    Google Scholar 

  • Emeis, S., H.P. Frank, F. Fiedler: Modification of air flow over an escarpment—Results from the Hjardemal experiment. Bound.-Lay. Meteorol. 74, 131–161. (1995).

    Google Scholar 

  • Emeis, S.: Vertical variation of frequency distributions of wind speed in and above the surface layer observed by sodar. Meteorol. Z. 10, 141–149 (2001).

    Google Scholar 

  • Founda, D., M. Tombrou, D.P. Lalas, D.N. Asimakopoulos: Some measurements of turbulence characteristics over complex terrain. Bound.-Lay. Meteorol. 83, 221–245 (1997).

    Google Scholar 

  • Frank, H., K. Heldt, S. Emeis, F. Fiedler: Flow over an Embankment: Speed-Up and Pressure Perturbation. Bound.-Lay. Meteorol. 63, 163–182 (1993).

    Google Scholar 

  • Heimann, D., De Franceschi, M., Emeis, S., Lercher, P., Seibert, P. (Eds): Air pollution, traffic noise and related health effects in the Alpine space—a guide for authorities and consulters. ALPNAP comprehensive report. Università degli Studi di Trento, Trento, 335 pp. (2007).

    Google Scholar 

  • Hoff, A.M.: Ein analytisches Verfahren zur Bestimmung der mittleren horizontalen Windgeschwindigkeiten über zweidimensionalen Hügeln. Ber. Inst. Meteorol. Klimatol. Univ. Hannover, 28, 68 pp. (1987).

    Google Scholar 

  • Jackson, P.S., J.C.R. Hunt: Turbulent wind flow over a low hill. Quart. J. Roy. Meteorol. Soc. 101, 929–955 (1975).

    Google Scholar 

  • Jensen, N.O.: A Note on Wind Generator Interaction. Risø-M-2411, Risø Natl. Lab., Roskilde (DK), 16 pp. (1983) (Available from http://www.risoe.dk/rispubl/VEA/veapdf/ris-m-2411.pdf).

  • Jensen, N.O., Petersen, E.L., Troen, I.: Extrapolation of Mean Wind Statistics with Special Regard to Wind Energy Applications, Report WCP-86, World Meteorol. Organization, Geneva, 85 pp. (1984).

    Google Scholar 

  • Justus, C.G., W.R. Hargraves, A. Mikhail, D. Graber: Methods for Estimating Wind Speed Frequency Distributions. J. Appl. Meteor. 17, 350–353 (1978).

    Google Scholar 

  • Lugauer, M,, Winkler, P.: Thermal circulation in South Bavaria—climatology and synoptic aspects. Meteorol. Z. 14, 15–30 (2005).

    Google Scholar 

  • Mason, P. J.: Flow over the Summit of an Isolated Hill, Bound.-Lay. Meteorol. 37, 385–405 (1986).

    Google Scholar 

  • Panofsky, H.A., D. Larko, R. Lipschutz, G. Stone, E.F. Bradley, A.J. Bowen und J. Højstrup: Spectra of velocity components over complex terrain. Quart. J. Roy. Meteorol. Soc. 108, 215–230 (1982).

    Google Scholar 

  • Petersen, E.L., N.G. Mortensen, L. Landberg, J. Højstrup, H.P. Frank: Wind Power Meteorology. Part II: Siting and Models. Wind Energy, 1, 55–72 (1998b).

    Google Scholar 

  • Renfrew, I.A., Anderson, P.S.: Profiles of katabatic flow in summer and winter over Coats Land, Antarctica. Quart. J. Roy. Meteor. Soc. 132, 779–802 (2006).

    Google Scholar 

  • Smith, R.B.: The influence of mountains on the atmosphere. In: Landsberg HE, Saltzman B (Eds) Adv. Geophys. 21, 87–230 (1978).

    Google Scholar 

  • Steinacker, R.: Area-height distribution of a valley and its relation to the valley wind. Contr. Atmos. Phys. 57, 64–71 (1984).

    Google Scholar 

  • Sykes, R.I.: An Asymptotic Theory of Incompressible Turbulent Boundary Layer Flow over a Small-Lump. J. Fluid Mech. 101, 647–670 (1980).

    Google Scholar 

  • Taylor, P.A.: Numerical studies of neutrally stratified planetary boundary layer flow over gentle topography, I: Two-dimensional cases. Bound.-Lay. Meteorol., 12, 37–60 (1977).

    Google Scholar 

  • Taylor, P.A., Mason, P.J., Bradley, E.F.: Boundary-Layer Flow over Low Hills. Bound.-Lay. Meteorol. 39, 107–132 (1987).

    Google Scholar 

  • Troen, I., E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, Denmark. 656 pp. (1989).

    Google Scholar 

  • Vergeiner, I.: An energetic theory of slope winds. Meteorol. Atmos. Phys. 19, 189–191 (1982).

    Google Scholar 

  • Vergeiner, I., Dreiseitl, E.: Valley winds and slope winds—observations and elementary thoughts. Meteorol. Atmos. Phys. 36, 264–286 (1987).

    Google Scholar 

  • Zenman, O., N.O. Jensen: Modification of Turbulence Characteristics in Flow over Hills. Quart. J. Roy. Meteorol. Soc. 113, 55–80 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Emeis .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Emeis, S. (2013). Winds in Complex Terrain. In: Wind Energy Meteorology. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30523-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30523-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30522-1

  • Online ISBN: 978-3-642-30523-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics