Skip to main content

Theoretically Grounded Acceleration Techniques for Simulated Annealing

  • Chapter

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 38))

Abstract

Simulated annealing (SA) is a generic optimization method whose popularity stems from its simplicity and its global convergence properties; it emulates the physical process of annealing whereby a solid is heated and then cooled down to eventually reach a minimum energy configuration. Although successfully applied to many difficult problems, SA is widely reported to converge very slowly, and it is common practice to relax some of its convergence conditions as well as to allow extra freedom in its design. However, variations on the theme of annealing usually come without optimal convergence guarantees.

In this paper, we review the fundamentals of SA and we focus on acceleration techniques that come with a rigorous mathematical justification. We discuss the design of the candidate-solution generation mechanism, the issue of finite-time cooling, and the technique of acceleration by concave distortion of the objective function. We also investigate a recently introduced generalization of SA—stochastic continuation—which significantly increases the design flexibility by allowing the candidate-solution generation mechanism and the objective function to vary with temperature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Discussion on the meeting on the Gibbs sampler and other Markov chain Monte Carlo methods. J. Roy. Statist. Soc. Ser. B 55(1), 53–102 (1993)

    Google Scholar 

  2. Azencott, R.: A common large deviations mathematical framework for sequential annealing and parallel annealing. In: Azencott, R. (ed.) Simulated Annealing: Parallelization Techniques, pp. 11–23. Wiley, New York (1992)

    Google Scholar 

  3. Azencott, R.: Sequential simulated annealing: speed of convergence and acceleration techniques. In: Azencott, R. (ed.) Simulated Annealing: Parallelization Techniques, pp. 1–10. Wiley, New York (1992)

    Google Scholar 

  4. Blake, A., Zisserman, A.: Visual reconstruction. The MIT Press (1987)

    Google Scholar 

  5. Catoni, O.: Large deviations and cooling schedules for the simulated annealing algorithm. C. R. Acad. Sci. Paris Sér. I Math. 307, 535–538 (1988) (in French)

    MathSciNet  MATH  Google Scholar 

  6. Catoni, O.: Rough large deviation estimates for simulated annealing: application to exponential schedules. Ann. Probab. 20(3), 1109–1146 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Catoni, O.: Metropolis, simulated annealing, and iterated energy transformation algorithms: theory and experiments. J. Complexity 12(4), 595–623 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Catoni, O.: Simulated annealing algorithms and Markov chains with rare transitions. In: Séminaire de Probabilités XXXIII. Lecture Notes in Math., vol. 1709, pp. 69–119. Springer, New York (1999)

    Chapter  Google Scholar 

  9. Chiang, T.S., Chow, Y.: On the convergence rate of annealing processes. SIAM J. Control Optim. 26(6), 1455–1470 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohn, H., Fielding, M.: Simulated annealing: searching for an optimal temperature schedule. SIAM J. Optim. 9(3), 779–802 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Del Moral, P., Miclo, L.: On the convergence and applications of generalized simulated annealing. SIAM J. Control Optim. 37(4), 1222–1250 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Desai, M.: Some results characterizing the finite time behaviour of the simulated annealing algorithm. Sādhanā 24(4-5), 317–337 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Fielding, M.: Simulated annealing with an optimal fixed temperature. SIAM J. Optim. 11(2), 289–307 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frigerio, A., Grillo, G.: Simulated annealing with time-dependent energy function. Math. Z. 213, 97–116 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gidas, B.: Nonstationary Markov chains and convergence of the annealing algorithm. J. Statist. Phys. 39(1/2), 73–131 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13(2), 311–329 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson, A., Jacobson, S.: On the convergence of generalized hill climbing algorithms. Discrete Appl. Math. 119(1-2), 37–57 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated annealing: theory and practice. D. Reidel Publishing Company (1987)

    Google Scholar 

  19. Löwe, M.: Simulated annealing with time-dependent energy function via Sobolev inequalities. Stochastic Process. Appl. 63(2), 221–233 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nielsen, M.: Graduated nonconvexity by functional focusing. IEEE Trans. Pattern Anal. Machine Intell. 19(5), 521–525 (1997)

    Article  Google Scholar 

  21. Nikolova, M.: Markovian reconstruction using a GNC approach. IEEE Trans. Image Process. 8(9), 1204–1220 (1999)

    Article  Google Scholar 

  22. Orosz, J., Jacobson, S.: Analysis of static simulated annealing algorithms. J. Optim. Theory Appl. 115(1), 165–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Orosz, J., Jacobson, S.: Finite-time performance analysis of static simulated annealing algorithms. Comput. Optim. Appl. 21(1), 21–53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Robini, M.C., Lachal, A., Magnin, I.E.: A stochastic continuation approach to piecewise constant reconstruction. IEEE Trans. Image Process. 16(10), 2576–2589 (2007)

    Article  MathSciNet  Google Scholar 

  25. Robini, M.C., Magnin, I.E.: 3-D reconstruction from a few radiographs using the Metropolis dynamics with annealing. In: Proc. IEEE Int. Conf. Image Processing, Kobe, Japan, vol. 3, pp. 876–880 (1999)

    Google Scholar 

  26. Robini, M.C., Magnin, I.E.: Stochastic nonlinear image restoration using the wavelet transform. IEEE Trans. Image Process. 12(8), 890–905 (2003)

    Article  MathSciNet  Google Scholar 

  27. Robini, M.C., Magnin, I.E.: Optimization by stochastic continuation. SIAM J. Imaging Sci. 3(4), 1096–1121 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Robini, M.C., Rastello, T., Magnin, I.E.: Simulated annealing, acceleration techniques and image restoration. IEEE Trans. Image Process. 8(10), 1374–1387 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Robini, M.C., Reissman, P.J.: On simulated annealing with temperature-dependent energy and temperature-dependent communication. Statist. Probab. Lett. 81(8), 915–920 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Robini, M.C., Reissman, P.J.: From simulated annealing to stochastic continuation: a new trend in combinatorial optimization. J. Global Optim. (to appear, 2012)

    Google Scholar 

  31. Robini, M.C., Smekens, F., Sixou, B.: Optimal inverse treatment planning by stochastic continuation. In: Proc. 8th IEEE Int. Symp. Biomedical Imaging, Chicago, IL, pp. 1792–1796 (2011)

    Google Scholar 

  32. Schuur, P.: Classification of acceptance criteria for the simulated annealing algorithm. Math. Oper. Res. 22(2), 266–275 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc C. Robini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robini, M.C. (2013). Theoretically Grounded Acceleration Techniques for Simulated Annealing. In: Zelinka, I., Snášel, V., Abraham, A. (eds) Handbook of Optimization. Intelligent Systems Reference Library, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30504-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30504-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30503-0

  • Online ISBN: 978-3-642-30504-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics