Skip to main content

Spectroscopy of Quantum Hall Edge States at Complex Filling Factors

  • Chapter
  • First Online:
Mesoscopic Quantum Hall Effect

Part of the book series: Springer Theses ((Springer Theses))

  • 1243 Accesses

Abstract

We propose direct experimental tests of the effective models of fractional quantum Hall edge states. We first illustrate the effective models classification with the example of a quantum Hall fluid at filling factor 2/3. We show that, in this example, it is impossible to describe the edge states with only one chiral channel and that there are several inequivalent models of the edge states with two fields. We focus our attention on the four simplest models of the edge states of a fluid with filling factor 2/3 and evaluate charges and scaling dimensions of quasi-particles. We study transport through an electronic Fabry-Perot interferometer and show that scaling properties of the Fourier components of Aharonov-Bohm oscillations in the current provide information about the electric charges and scaling dimensions of quasi-particles. Thus, such interferometers can be used to discriminate between different effective models of fluids corresponding to the same filling factor.

Some text sections in this chapter are reproduced from Phys. Rev. B 80, 045319 (2009), © American Physical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Numerical simulations [37] show that for larger values of statistical phases the quantum Hall state is not stable, and electrons form a Wigner crystal [5].

  2. 2.

    We assume that both quantum point contacts are either in a weak tunneling regime or in a weak backscattering regime.Moreover, we further assume that two channels at each quantum Hall edge originate from the same Ohmic contact, and therefore, they are equally biased.

References

  1. G. ’t Hooft, Proceedings of the Salamfest, 0284–0296 (1993)

    Google Scholar 

  2. L. Susskind, J. Math. Phys. 36, 6377 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998)

    Google Scholar 

  4. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  5. R.E. Prange, S.M. Girvin (eds.) The Quantum Hall Effect (Springer, New York, 1987)

    Google Scholar 

  6. X.-G. Wen, Phys. Rev. B 41, 12838 (1990)

    Article  ADS  Google Scholar 

  7. J. Fröhlich, A. Zee, Nucl. Phys. B 364, 517 (1991)

    Article  ADS  Google Scholar 

  8. J. Fröhlich, T. Kerler, Nucl. Phys. B 354, 369 (1991)

    Article  ADS  Google Scholar 

  9. J. Fröhlich, B. Pedrini, C. Schweigert, J. Walcher, J. Stat. Phys. 103, 527 (2001)

    Article  MATH  Google Scholar 

  10. J. Fröhlich, U.M. Studer, E. Thiran, J. Stat. Phys. 86, 821 (1997)

    Article  ADS  MATH  Google Scholar 

  11. X.-G. Wen, Phys. Rev. B 44, 5708 (1991)

    Article  ADS  Google Scholar 

  12. A.M. Chang, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 77, 2538 (1996)

    Article  ADS  Google Scholar 

  13. M. Crayson, D.C. Tsui, L.N. Pfeiffer, K.W. West, A.M. Chang, Phys. Rev. Lett. 80, 1062 (1998)

    Article  ADS  Google Scholar 

  14. For a review, see A.M. Chang, Rev. Mod. Phys. 75, 1449 (2003)

    Google Scholar 

  15. D.B. Chklovskii, B.I. Shklovskii, L.I. Glazman, Phys. Rev. B 46, 4026 (1992)

    Article  ADS  Google Scholar 

  16. C.L. Kane, M.P. Fisher, J. Polchinski, Phys. Rev. Lett. 72, 4129 (1994)

    Article  ADS  Google Scholar 

  17. C.L. Kane, M.P.A. Fisher, Phys. Rev. B 51, 13449 (1995)

    Google Scholar 

  18. S. Khlebnikov, Phys. Rev. B 73, 045331 (2006)

    Article  ADS  Google Scholar 

  19. C.L. Kane, M.P.A. Fisher, Phys. Rev. Lett. 72, 724 (1994)

    Google Scholar 

  20. L. Saminadayar, D.C. Glattli, Y. Jin, B. Etienne, Phys. Rev. Lett. 79, 2526 (1997)

    Article  ADS  Google Scholar 

  21. R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, D. Mahalu, Nature 389, 162 (1997)

    Google Scholar 

  22. M. Dolev, M. Heiblum, V. Umansky, A. Stern, D. Mahalu, Nature 452, 829 (2008)

    Article  ADS  Google Scholar 

  23. F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. Lett. 95, 246802 (2005)

    Article  ADS  Google Scholar 

  24. Y. Ji et al., Nature (London) 422, 415 (2003)

    Google Scholar 

  25. V.V. Ponomarenko, D.V. Averin, Phys. Rev. Lett. 99, 066803 (2007)

    Article  ADS  Google Scholar 

  26. R. Guyon, P. Devillard, T. Martin, I. Safi, Phys. Rev. B 65, 153304 (2002)

    Article  ADS  Google Scholar 

  27. I. Neder, M. Heiblum, Y. Levinson, D. Mahalu, V. Umansky, Phys. Rev. Lett. 96, 016804 (2006)

    Article  ADS  Google Scholar 

  28. L.V. Litvin, H.-P. Tranitz, W. Wegscheider, C. Strunk, Phys. Rev. B 75, 033315 (2007)

    Article  ADS  Google Scholar 

  29. L.V. Litvin, A. Helzel, H.-P. Tranitz, W. Wegscheider, C. Strunk, Phys. Rev. B 78, 075303 (2008)

    Article  ADS  Google Scholar 

  30. I. Neder, F. Marquardt, M. Heiblum, D. Mahalu, V. Umansky, Nat. Phys. 3, 534 (2007)

    Article  Google Scholar 

  31. E.V. Sukhorukov, V.V. Cheianov, Phys. Rev. Lett. 99, 156801 (2007)

    Article  ADS  Google Scholar 

  32. I.P. Levkivskyi, E.V. Sukhorukov, Phys. Rev. B 78, 045322 (2008)

    Article  ADS  Google Scholar 

  33. J.T. Chalker, Y. Gefen, M.Y. Veillette, Phys. Rev. B 76, 085320 (2007)

    Article  ADS  Google Scholar 

  34. I. Neder, E. Ginossar, Phys. Rev. Lett. 100, 196806 (2008)

    Article  ADS  Google Scholar 

  35. S.-C. Youn, H.-W. Lee, H.-S. Sim, Phys. Rev. Lett. 100, 196807 (2008)

    Article  ADS  Google Scholar 

  36. I.P. Levkivskyi, E.V. Sukhorukov, Phys. Rev. Lett. 103, 036801 (2009)

    Article  ADS  Google Scholar 

  37. X. Zhu, S.G. Louie, Phys. Rev. B 52, 5863 (1995)

    Google Scholar 

  38. I.P. Levkivskyi, A. Boyarsky, J. Fröhlich, E.V. Sukhorukov, Phys. Rev. B 80, 045319 (2009)

    Article  ADS  Google Scholar 

  39. X.G. Wen, Phys. Rev. Lett. 64, 2206 (1990)

    Article  ADS  Google Scholar 

  40. A.H. MacDonald, Phys. Rev. Lett. 64, 220 (1990)

    Article  ADS  Google Scholar 

  41. M.D. Johnson, A.H. MacDonald, Phys. Rev. Lett. 67, 2060 (1991)

    Article  ADS  Google Scholar 

  42. J.K. Jain, Phys. Rev. Lett. 63, 199 (1989)

    Article  ADS  Google Scholar 

  43. Z.-X. Hu, H. Chen, K. Yang, E.H. Rezayi, X. Wan, Phys. Rev. B 78, 235315 (2008)

    Article  ADS  Google Scholar 

  44. R.G. Clark, S.R. Haynes, J.V. Branch, A.M. Suckling, P.A. Wright, P.M.W. Oswald, J.J. Harris, C.T. Foxon, Surf. Sci. 229, 25 (1990)

    Article  ADS  Google Scholar 

  45. J.P. Eisenstein, H.L. Stormer, L.N. Pfeiffer, K.W. West, Phys. Rev. B 41, 7910 (1990)

    Article  ADS  Google Scholar 

  46. L.W. Engel, S.W. Hwang, T. Sajoto, D.C. Tsui, M. Shayegan, Phys. Rev. B 45, 3418 (1992)

    Article  ADS  Google Scholar 

  47. P. Roulleau, F. Portier, D.C. Glattli, P. Roche, A. Cavanna, G. Faini, U. Gennser, D. Mailly, Phys. Rev. B 76, 161309 (2007)

    Article  ADS  Google Scholar 

  48. P. Roulleau, F. Portier, D.C. Glattli, P. Roche, A. Cavanna, G. Faini, U. Gennser, D. Mailly, Phys. Rev. Lett. 100, 126802 (2008)

    Article  ADS  Google Scholar 

  49. E. Bieri, Correlation and interference experiments with edge states, Ph.D. Thesis, University of Basel, 2007

    Google Scholar 

  50. E. Bieri, M. Weiss, O. Goktas, M. Hauser, C. Schonenberger, S. Oberholzer, Phys. Rev. B 79, 245324 (2009)

    Article  ADS  Google Scholar 

  51. F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. B 72, 075342 (2005)

    Article  ADS  Google Scholar 

  52. F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. Lett. 98, 076805 (2007)

    Article  ADS  Google Scholar 

  53. F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. B 74, 115301 (2006)

    Article  ADS  Google Scholar 

  54. R.L. Willett, L.N. Pfeiffer, K.W. West, PNAS 106, 8853 (2009)

    Article  ADS  Google Scholar 

  55. R.L. Willett, L.N. Pfeiffer, K.W. West, arXiv:0911.0345

    Google Scholar 

  56. J.A. Simmons, H.P. Wei, L.W. Engel, D.C. Tsui, M. Shayegan, Phys. Rev. Lett. 63, 1731 (1989)

    Article  ADS  Google Scholar 

  57. J.A. Simmons, S.W. Hwang, D.C. Tsui, H.P. Wei, L.W. Engel, M. Shayegan, Phys. Rev. B 44, 12933 (1991)

    Article  ADS  Google Scholar 

  58. B. Rosenow, B.I. Halperin, Phys. Rev. Lett. 98, 106801 (2007)

    Article  ADS  Google Scholar 

  59. B.I. Halperin, A. Stern, I. Neder, B. Rosenow, Phys. Rev B 83, 155440 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Levkivskyi .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Levkivskyi, I. (2012). Spectroscopy of Quantum Hall Edge States at Complex Filling Factors. In: Mesoscopic Quantum Hall Effect. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30499-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30499-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30498-9

  • Online ISBN: 978-3-642-30499-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics