Skip to main content

Modelling and Analysis of the Optical Properties

  • Chapter
  • First Online:
Book cover Self-Organized Arrays of Gold Nanoparticles

Part of the book series: Springer Theses ((Springer Theses))

  • 795 Accesses

Abstract

In this chapter we will focus on the development of a theoretical modelling framework, allowing us to account for the optical response of the 2D arrays of gold nanoparticles described in the previous chapters. A theoretical support to the experimental data is of fundamental importance in order to achieve a comprehensive understanding of the origins of the optical properties of these systems, and thus to engineer the optical response by selecting a priori the proper morphological characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. H. Li. Refractive index of alkali halides and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data, 5:329, 1976.

    Google Scholar 

  2. H. Fujiwara. Spectroscopic Ellipsometry. Principles and Applications. Wiley, 2007.

    Google Scholar 

  3. G. Baldacchini, O. Goncharova, V. S. Kalinov, R. M. Montereali, E. Nichelatti, A. Vincenti, and A. P. Voitovich. Optical properties of coloured lif crystals with given content of oxygen, hydroxyl and metal impurities. Phys. Stat. Sol. (c), 4:744, 2007.

    Google Scholar 

  4. G. Baldacchini, O. Goncharova, V. S. Kalinov, R. M. Montereali, A. Vincenti, and A. P. Voitovich. Thermal transformation of colour centres in lif crystals with given content of oxygen, hydroxyl and metal ions. Phys. Stat. Sol. (c), 4:1134, 2007.

    Google Scholar 

  5. Bruce T. Draine and Piotr J. Flatau. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A, 11:1491, 1994.

    Google Scholar 

  6. B. T. Draine. The discrete-dipole approximation and its application to interstellar graphite grains. Astr. J., 333:848, 1988.

    Google Scholar 

  7. P. C. Waterman. Matrix methods in potential theory and electromagnetic scattering. J. App. Phys., 50:4550, 1979.

    Google Scholar 

  8. Michael I. Mishchenko, Larry D. Travis, and Daniel W. Mackowski. T-matrix computations of light scattering by nonspherical particles: A review. J. Quant Spectrosc. Ra., 55:535, 1996.

    Google Scholar 

  9. Jian-Ming Jin. The Finite Element Method in Electromagnetics, 2nd Edition. Wiley-IEEE Press, 2002.

    Google Scholar 

  10. L. Gao, K. W. Yu, Z. Y. Li, and Bambi Hu. Effective nonlinear optical properties of metal-dielectric composite media with shape distribution. Phys. Rev. E, 64:036615, 2001.

    Google Scholar 

  11. J.D. Jackson. Classical Electrodynamics. John Wiley & Sons, 1999.

    Google Scholar 

  12. Bohren C.F.; Huffman D.R. Absorption and scattering of light by small particles. Wiley, 1998.

    Google Scholar 

  13. Rubén G. Barrera, Pedro Villaseñor González, W. Luis Mochán, and Guillermo Monsivais. Effective dielectric response of polydispersed composites. Phys. Rev. B, 41:7370, 1990.

    Google Scholar 

  14. Rubén G. Barrera, Marcelo del Castillo-Mussot, Guillermo Monsivais, Pedro Villaseor, and W. Luis Mochán. Optical properties of two-dimensional disordered systems on a substrate. Phys. Rev. B, 43:13819, 1991.

    Google Scholar 

  15. Rubén G. Barrera, Jairo Giraldo, and W. Luis Mochán. Effective dielectric response of a composite with aligned spheroidal inclusions. Phys. Rev. B, 47:8528, 1993.

    Google Scholar 

  16. Bashara N.M. Azzam R.M.A. Ellipsometry and Polarized Light. North Holland, 1988.

    Google Scholar 

  17. Stenzel O. The Physics of Thin Film Optical Spectra: An Introduction. Springer, 2010.

    Google Scholar 

  18. Wolf E. Born M. Principles of Optics. Cambridge University Press, 1999.

    Google Scholar 

  19. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg. Optical properties of two interacting gold nanoparticles. Opt. Comm., 220:137, 2003.

    Google Scholar 

  20. Prashant K. Jain, Wenyu Huang, and Mostafa A. El-Sayed. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Letters, 7:2080, 2007.

    Google Scholar 

  21. Christopher Tabor, Raghunath Murali, Mahmoud Mahmoud, and Mostafa A. El-Sayed. On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. J. Phys. Chem. A, 113:1946, 2009.

    Google Scholar 

  22. Prashant K. Jain and Mostafa A. El-Sayed. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett., 487:153, 2010.

    Google Scholar 

  23. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B, 48:18178, 1993.

    Google Scholar 

  24. E. Stefan Kooij, Herbert Wormeester, E. A. Martijn Brouwer, Esther van Vroonhoven, Arend van Silfhout, and Bene Poelsema. Optical characterization of thin colloidal gold films by spectroscopic ellipsometry. Langmuir, 18:4401, 2002.

    Google Scholar 

  25. F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa. Optical properties of cluster-assembled nanoporous gold films. Phys. Rev. B, 80:205428, 2009.

    Google Scholar 

  26. Stephan Link and Mostafa A. El-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B, 103:4212, 1999.

    Google Scholar 

  27. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett., 23:1331, 1998.

    Google Scholar 

  28. Mark L. Brongersma, John W. Hartman, and Harry A. Atwater. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B, 62:R16356, 2000.

    Google Scholar 

  29. Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater. Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. App. Phys. Lett., 81:1714, 2002.

    Google Scholar 

  30. L. L. Zhao, K. L. Kelly, and G. C. Schatz. The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B, 107:7343, 2003.

    Google Scholar 

  31. Christy L. Haynes, Adam D. McFarland, LinLin Zhao, Richard P. Van Duyne, George C. Schatz, Linda Gunnarsson, Juris Prikulis, Bengt Kasemo, and Mikael Käll. Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B, 107:7337, 2003.

    Google Scholar 

  32. Erin M. Hicks, Shengli Zou, George C. Schatz, Kenneth G. Spears, Richard P. Van Duyne, Linda Gunnarsson, Tomas Rindzevicius, Bengt Kasemo, and Mikael Käll. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett., 5:1065, 2005.

    Google Scholar 

  33. Christopher Tabor, Desiree Van Haute, and Mostafa A. El-Sayed. Effect of orientation on plasmonic coupling between gold nanorods. ACS Nano, 3:3670, 2009.

    Google Scholar 

  34. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Letters, 3:1087, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Anghinolfi .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anghinolfi, L. (2012). Modelling and Analysis of the Optical Properties. In: Self-Organized Arrays of Gold Nanoparticles. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30496-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30496-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30495-8

  • Online ISBN: 978-3-642-30496-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics