Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 813 Accesses

Abstract

In a world in which the information and communication technology has gradually assumed a pivotal role for scientific, technological and social purposes, there is a constantly growing demand for smaller and faster devices able of manipulating information, typically in the form of electronic, magnetic or optical signals. The request of smaller and faster devices has inevitably led to a constant process of miniaturization of their elementary components, thereby bringing along a huge load of scientific and technological challenges that researchers and engineers have to face. Nowadays, for example, state-of-the-art technology requires excellent control of structures having typical lateral dimension of the order of approximately ten nanometers, not too far off molecular dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom. Imprint of sub-25 nm vias and trenches in polymers. App. Phys. Lett., 67:3114, 1995.

    Google Scholar 

  2. Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom. Imprint lithography with 25-nanometer resolution. Science, 272:85, 1996.

    Google Scholar 

  3. Matthew Colburn, Stephen C. Johnson, Michael D. Stewart, S. Damle, Todd C. Bailey, Bernard Choi, M. Wedlake, Timothy B. Michaelson, S. V. Sreenivasan, John G. Ekerdt, and C. Grant Willson. Step and flash imprint lithography: a new approach to high-resolution patterning. volume 3676, page 379. SPIE, 1999.

    Google Scholar 

  4. Saleem H. Zaidi and S. R. J. Brueck. Multiple-exposure interferometric lithography. J. Vac. Sci. Tech. B, 11:658, 1993.

    Google Scholar 

  5. Kenji Gamo. Nanofabrication by FIB. Microelectr. Eng., 32:159, 1996.

    Google Scholar 

  6. John C. Hulteen and Richard P. Van Duyne. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Tech. A, 13:1553, 1995.

    Google Scholar 

  7. Richard D. Piner, Jin Zhu, Feng Xu, Seunghun Hong, and Chad A. Mirkin. “Dip-Pen” nanolithography. Science, 283:661, 1999.

    Google Scholar 

  8. Shuguang Zhang. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotech., 21:1171, 2003.

    Google Scholar 

  9. Ki-Bum Lee, So-Jung Park, Chad A. Mirkin, Jennifer C. Smith, and Milan Mrksich. Protein nanoarrays generated by dip-pen nanolithography. Science, 295:1702, 2002.

    Google Scholar 

  10. J. Christopher Love, Lara A. Estroff, Jennah K. Kriebel, Ralph G. Nuzzo, and George M. Whitesides. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev., 105:1103, 2005.

    Google Scholar 

  11. Michael J Fasolka and Anne M Mayes. Block copolymer thin films: Physics and applications. Ann. Rev. Mat. Res., 31:323, 2001.

    Google Scholar 

  12. M. P. Pileni, Y. Lalatonne, D. Ingert, I. Lisiecki, and A. Courty. Self assemblies of nanocrystals: preparation, collective properties and uses. Faraday Discuss., 125:251, 2004.

    Google Scholar 

  13. C. B. Murray, C. R. Kagan, and M. G. Bawendi. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science, 30:545, 2000.

    Google Scholar 

  14. Shouheng Sun, C. B. Murray, Dieter Weller, Liesl Folks, and Andreas Moser. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 287(5460):1989, 2000.

    Google Scholar 

  15. Eunhee Jeoung, Trent H. Galow, Joerg Schotter, Mustafa Bal, Andrei Ursache, Mark T. Tuominen, Christopher M. Stafford, Thomas P. Russell, and Vincent M. Rotello. Fabrication and characterization of nanoelectrode arrays formed via block copolymer self-assembly. Langmuir, 17:6396, 2001.

    Google Scholar 

  16. Zhaoxiang Deng and Chengde Mao. Molecular lithography with DNA nanostructures. Ang. Chem. Int. Ed., 43:4068, 2004.

    Google Scholar 

  17. Mato Knez, Alexander M. Bittner, Fabian Boes, Christina Wege, Holger Jeske, E. Mai, and Klaus Kern. Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Letters, 3:1079, 2003.

    Google Scholar 

  18. Zhaoxiang Deng and Chengde Mao. DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays. Nano Letters, 3:1545, 2003.

    Google Scholar 

  19. Hao Yan, Sung Ha Park, Gleb Finkelstein, John H. Reif, and Thomas H. LaBean. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 301:1882, 2003.

    Google Scholar 

  20. Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, and James J. Storhoff. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 382:607, 1996.

    Google Scholar 

  21. Jwa-Min Nam, C. Shad Thaxton, and Chad A. Mirkin. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 301:1884, 2003.

    Google Scholar 

  22. Ki-Bum Lee, Jung-Hyurk Lim, and Chad A. Mirkin. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc., 125:5588, 2003.

    Google Scholar 

  23. Marie-Christine Daniel and Didier Astruc. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104:293, 2004.

    Google Scholar 

  24. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys. Rev. B, 71:235408, 2005.

    Google Scholar 

  25. Amanda J. Haes, W. Paige Hall, Lei Chang, William L. Klein, and Richard P. Van Duyne. A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease. Nano Letters, 4:1029, 2004.

    Google Scholar 

  26. Anke S. Wrz, Ken Judai, Stphane Abbet, and Ulrich Heiz. Cluster size-dependent mechanisms of the CO + NO reaction on small Pd\(_n\) (n = 30) clusters on oxide surfaces. J. Am. Chem. Soc., 125:7964, 2003.

    Google Scholar 

  27. B. Warne, O.I. Kasyutich, E.L. Mayes, J.A.L. Wiggins, and K.K.W. Wong. Self assembled nanoparticulate Co:Pt for data storage applications. IEEE Trans. Mag., 36:3009, 2000.

    Google Scholar 

  28. S. Sun. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mat., 18:393, 2006.

    Google Scholar 

  29. Tito Trindade, Paul O’Brien, and Nigel L. Pickett. Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem. Mat., 13:3843, 2001.

    Google Scholar 

  30. Marcos M. Alvarez, Joseph T. Khoury, T. Gregory Schaaff, Marat N. Shafigullin, Igor Vezmar, and Robert L. Whetten. Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B, 101:3706, 1997.

    Google Scholar 

  31. R. H. Kodama, Salah A. Makhlouf, and A. E. Berkowitz. Finite size effects in antiferromagnetic NiO nanoparticles. Phys. Rev. Lett., 79:1393, 1997.

    Google Scholar 

  32. M. Respaud, J. M. Broto, H. Rakoto, A. R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T. Ould Ely, C. Amiens, and B. Chaudret. Surface effects on the magnetic properties of ultrafine cobalt particles. Phys. Rev. B, 57:2925, 1998.

    Google Scholar 

  33. G. F. Goya, T. S. Berquó, F. C. Fonseca, and M. P. Morales. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. App. Phys., 94:3520, 2003.

    Google Scholar 

  34. J. Bansmann, S.H. Baker, C. Binns, J.A. Blackman, J.-P. Bucher, J. Dorantes-Dvila, V. Dupuis, L. Favre, D. Kechrakos, A. Kleibert, K.-H. Meiwes-Broer, G.M. Pastor, A. Perez, O. Toulemonde, K.N. Trohidou, J. Tuaillon, and Y. Xie. Magnetic and structural properties of isolated and assembled clusters. Surf. Sci. Rep., 56:189, 2005.

    Google Scholar 

  35. Nathaniel L. Rosi and Chad A. Mirkin. Nanostructures in biodiagnostics. Chem. Rev., 105:1547, 2005.

    Google Scholar 

  36. Prashant V. Kamat. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B, 106:7729, 2002.

    Google Scholar 

  37. Mauro Ferrari. Cancer nanotechnology: opportunities and challenges. Nature Reviews. Cancer, 5:161, 2005.

    Google Scholar 

  38. Adam D. McFarland and Richard P. Van Duyne. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Letters, 3:1057, 2003.

    Google Scholar 

  39. YunWei Charles Cao, Rongchao Jin, and Chad A. Mirkin. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 297:1536, 2002.

    Google Scholar 

  40. Jayanth Panyam and Vinod Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 55:329, 2003.

    Google Scholar 

  41. Krishnendu Roy, Hai-Quan Mao, Shau-Ku Huang, and Kam W. Leong. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Medicine, 5:387, 1999.

    Google Scholar 

  42. Christof M. Niemeyer. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Ang. Chem. Int. Ed., 40:4128, 2001.

    Google Scholar 

  43. Ajay Kumar Gupta and Mona Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26:3995, 2005.

    Google Scholar 

  44. Q A Pankhurst, J Connolly, S K Jones, and J Dobson. Applications of magnetic nanoparticles in biomedicine. J. Phys. D, 36:R167, 2003.

    Google Scholar 

  45. Xiaohua Huang, Ivan H. El-Sayed, Wei Qian, and Mostafa A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc., 128:2115, 2006.

    Google Scholar 

  46. Stephane Mornet, Sebastien Vasseur, Fabien Grasset, and Etienne Duguet. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem., 14:2161, 2004.

    Google Scholar 

  47. Andreas Jordan, Regina Scholz, Peter Wust, Horst Fähling, and Roland Felix. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Mag. Mag. Mat., 201:413, 1999.

    Google Scholar 

  48. B D Terris and T Thomson. Nanofabricated and self-assembled magnetic structures as data storage media. J. Phys. D, 38:R199, 2005.

    Google Scholar 

  49. Xiaowei Teng and Hong Yang. Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe\(_2\)O\(_3\) core-shell nanoparticles. J. Am. Chem. Soc., 125:14559, 2003.

    Google Scholar 

  50. G. A. Held, Hao Zeng, and Shouheng Sun. Magnetics of ultrathin FePt nanoparticle films. J. App. Phys., 95:1481, 2004.

    Google Scholar 

  51. Ekmel Ozbay. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science, 311:189, 2006.

    Google Scholar 

  52. Liang-shi Li, Joost Walda, Liberato Manna, and A. Paul Alivisatos. Semiconductor nanorod liquid crystals. Nano Letters, 2:557, 2002.

    Google Scholar 

  53. Marisa Mäder, Thomas Höche, Jürgen W. Gerlach, Susanne Perlt, Jens Dorfmüller, Michael Saliba, Ralf Vogelgesang, Klaus Kern, and Bernd Rauschenbach. Plasmonic activity of large-area gold nanodot arrays on arbitrary substrates. Nano Letters, 10:47, 2010.

    Google Scholar 

  54. E. Hutter and J. H. Fendler. Exploitation of localized surface plasmon resonance. Adv. Mater., 16:1685, 2004.

    Google Scholar 

  55. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nature. Mater., 7:442, 2008.

    Google Scholar 

  56. Amanda J. Haes, Shengli Zou, George C. Schatz, and Richard P. Van Duyne. A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B, 108:109, 2004.

    Google Scholar 

  57. Christopher J. Orendorff, Anand Gole, Tapan K. Sau, and Catherine J. Murphy. Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence. Anal. Chem., 77:3261, 2005.

    Google Scholar 

  58. Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater. Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. App. Phys. Lett., 81:1714, 2002.

    Google Scholar 

  59. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater., 2:229, 2003.

    Google Scholar 

  60. Stefan A. Maier, Mark L. Brongersma, Pieter G. Kik, and Harry A. Atwater. Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys. Rev. B, 65:193408, 2002.

    Google Scholar 

  61. Hitoshi Kuwata, Hiroharu Tamaru, Kunio Esumi, and Kenjiro Miyano. Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation. Appl. Phys. Lett., 83:4625, 2003.

    Google Scholar 

  62. U. Kreibig. Optical absorption of small metallic particles. Surf. Sci., 156:678, 1985.

    Google Scholar 

  63. Cecilia Noguez. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C, 111:3806, 2007.

    Google Scholar 

  64. Poelsema B. Stefan Kooij E. Shape and size effects in the optical properties of metallic nanorods. Phys. Chem. Chem. Phys., 8:3349, 2006.

    Google Scholar 

  65. S. Link, M. B. Mohamed, and M. A. El-Sayed. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B, 103:3073, 1999.

    Google Scholar 

  66. Stephan Link and Mostafa A. El-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B, 103:4212, 1999.

    Google Scholar 

  67. Bohren C.F.; Huffman D.R. Absorption and scattering of light by small particles. Wiley, 1998.

    Google Scholar 

  68. U. Kreibig and M. Vollmer. Optical Properties of Metal Clusters. Springer, 1995.

    Google Scholar 

  69. M. Quinten. Optical Properties of Nanoparticle Systems. Wiley-VCH, Berlin, 2011.

    Google Scholar 

  70. K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107:668, 2003.

    Google Scholar 

  71. Molly M. Miller and Anne A. Lazarides. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B, 109:21556, 2005.

    Google Scholar 

  72. Encai Hao and George C. Schatz. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys., 120:357, 2004.

    Google Scholar 

  73. Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater. Optical pulse propagation in metal nanoparticle chain waveguides. Phys. Rev. B, 67:205402, 2003.

    Google Scholar 

  74. S. A. Maier. Plasmonics: Metal nanostructures for subwavelength photonic devices. Selected Topics in Quantum Electronics, IEEE Journal of, 12:1214, 2006.

    Google Scholar 

  75. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Letters, 3:1087, 2003.

    Google Scholar 

  76. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg. Optical properties of two interacting gold nanoparticles. Opt. Comm., 220:137, 2003.

    Google Scholar 

  77. K. George Thomas, Said Barazzouk, Binil Itty Ipe, S. T. Shibu Joseph, and Prashant V. Kamat. Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J. Phys. Chem. B, 108:13066, 2004.

    Google Scholar 

  78. Prashant K. Jain, Wenyu Huang, and Mostafa A. El-Sayed. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Letters, 7:2080, 2007.

    Google Scholar 

  79. Christopher Tabor, Desiree Van Haute, and Mostafa A. El-Sayed. Effect of orientation on plasmonic coupling between gold nanorods. ACS Nano, 3:3670, 2009.

    Google Scholar 

  80. Christopher Tabor, Raghunath Murali, Mahmoud Mahmoud, and Mostafa A. El-Sayed. On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. J. Phys. Chem. A, 113:1946, 2009.

    Google Scholar 

  81. Prashant K. Jain and Mostafa A. El-Sayed. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett., 487:153, 2010.

    Google Scholar 

  82. A. Taleb, V. Russier, A. Courty, and M. P. Pileni. Collective optical properties of silver nanoparticles organized in two-dimensional superlattices. Phys. Rev. B, 59:13350, 1999.

    Google Scholar 

  83. L. L. Zhao, K. L. Kelly, and G. C. Schatz. The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B, 107:7343, 2003.

    Google Scholar 

  84. Christy L. Haynes, Adam D. McFarland, LinLin Zhao, Richard P. Van Duyne, George C. Schatz, Linda Gunnarsson, Juris Prikulis, Bengt Kasemo, and Mikael Käll. Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B, 107:7337, 2003.

    Google Scholar 

  85. Erin M. Hicks, Shengli Zou, George C. Schatz, Kenneth G. Spears, Richard P. Van Duyne, Linda Gunnarsson, Tomas Rindzevicius, Bengt Kasemo, and Mikael Käll. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett., 5:1065, 2005.

    Google Scholar 

  86. Luis M. Liz-Marzán. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir, 22:32, 2006.

    Google Scholar 

  87. S. K. Ghosh and T. Pal. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev., 107:4797, 2007.

    Google Scholar 

  88. T. W. H. Oates, A. Keller, S. Faksko, and A. Mücklich. Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption. Plasmonics, 2:47, 2007.

    Google Scholar 

  89. Stéphanie Vial, Isabel Pastoriza-Santos, Jorge Pérez-Juste, and Luis M. Liz-Marzán. Plasmon coupling in layer-by-layer assembled gold nanorod films. Langmuir, 23:4606, 2007.

    Google Scholar 

  90. Fredrik Westerlund and Thomas Björnholm. Directed assembly of gold nanoparticles. Curr. Opin. Coll. Interf., 14:126, 2009.

    Google Scholar 

  91. I. Romero and F. J. García de Abajo. Anisotropy and particle-size effects in nanostructured plasmonic metamaterials. Opt. Expr., 17:22010, 2009.

    Google Scholar 

  92. S. A. Maier. Plasmonics: Fundamentals and Applications. Springer, 2007.

    Google Scholar 

  93. M. L. Brongersma and P. G. Kik, editors. Surface Plasmon Nanophotonics. Springer, 2007.

    Google Scholar 

  94. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett., 23:1331, 1998.

    Google Scholar 

  95. Mark L. Brongersma, John W. Hartman, and Harry A. Atwater. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B, 62:R16356, 2000.

    Google Scholar 

  96. Andrew N. Shipway, Eugenii Katz, and Itamar Willner. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem, 1:18, 2000.

    Google Scholar 

  97. H. Ko, S. Singamaneni, and V. V. Tsukruk. Nanostructured surfaces and assemblies as SERS media. Small, 4:1576, 2008.

    Google Scholar 

  98. C. Petit,, and M. P. Pileni. Cobalt nanosized particles organized in a 2D superlattice: Synthesis, characterization, and magnetic properties. J. Phys. Chem. B, 103:1805, 1999.

    Google Scholar 

  99. M. P. Pileni. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B, 105:3358, 2001.

    Google Scholar 

  100. N. Shukla, Erik B. Svedberg, and J. Ell. Long range ordering of self-assembled monolayers of FePt nanoparticles on modified substrates. Surf. Coat. Tech., 201:3810, 2006.

    Google Scholar 

  101. Takami Shimizu, Toshiharu Teranishi, Satoshi Hasegawa, and Mikio Miyake. Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state. J. Phys. Chem. B, 107:2719, 2003.

    Google Scholar 

  102. David D. Evanoff and George Chumanov. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem, 6:1221, 2005.

    Google Scholar 

  103. Catherine J. Murphy, Tapan K. Sau, Anand M. Gole, Christopher J. Orendorff, Jinxin Gao, Linfeng Gou, Simona E. Hunyadi, and Tan Li. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B, 109:13857, 2005.

    Google Scholar 

  104. Franklin Kim, Serena Kwan, Jennifer Akana, and Peidong Yang. Langmuir-Blodgett nanorod assembly. Journal of the American Chemical Society, 123:4360, 2001.

    Google Scholar 

  105. Sihai Chen, Zhiyong Fan, and David L. Carroll. Silver nanodisks: Synthesis, characterization, and self-assembly. J. Phys. Chem. B, 106:10777, 2002.

    Google Scholar 

  106. A. N. Lagarkov and A. K. Sarychev. Electromagnetic properties of composites containing elongated conducting inclusions. Phys. Rev. B, 53:6318, 1996.

    Google Scholar 

  107. Rachel K. Smith, Penelope A. Lewis, and Paul S. Weiss. Patterning self-assembled monolayers. Progr. Surf. Sci., 75:1, 2004.

    Google Scholar 

  108. M. Geissler and Y. Xia. Patterning: Principles and some new developments. Adv. Mat., 16:1249, 2004.

    Google Scholar 

  109. Xing Ling, Xin Zhu, Jin Zhang, Tao Zhu, Manhong Liu, Lianming Tong, and Zhongfan Liu. Reproducible patterning of single Au nanoparticles on silicon substrates by scanning probe oxidation and self-assembly. J. Phys. Chem. B, 109:2657, 2005.

    Google Scholar 

  110. Shantang Liu, Rivka Maoz, and Jacob Sagiv. Planned nanostructures of colloidal gold via self-assembly on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality. Nano Letters, 4:845, 2004.

    Google Scholar 

  111. Nisha Shukla, Erik B. Svedberg, and John Ell. FePt nanoparticle adsorption on a chemically patterned silicon-gold substrate. Surf. Coat. Tech., 201:1256, 2006.

    Google Scholar 

  112. Joanna Aizenberg, Andrew J. Black, and George M. Whitesides. Controlling local disorder in self-assembled monolayers by patterning the topography of their metallic supports. Nature, 394:868, 1998.

    Google Scholar 

  113. Tobias Kraus, Laurent Malaquin, Heinz Schmid, Walter Riess, Nicholas D. Spencer, Nicholas D. Spencer, Nicholas D. Spencer, and Heiko Wolf. Nanoparticle printing with single-particle resolution. Nat. Nano., 2:570, 2007.

    Google Scholar 

  114. Toshiharu Teranishi, Akira Sugawara, Takami Shimizu, and Mikio Miyake. Planar array of 1D gold nanoparticles on ridge-and-valley structured carbon. J. Am. Chem. Soc., 124:4210, 2002.

    Google Scholar 

  115. Akira Sugawara, G. G. Hembree, and M. R. Scheinfein. Self-organized mesoscopic magnetic structures. J. App. Phys., 82:5662, 1997.

    Google Scholar 

  116. Akira Sugawara and K. Mae. Faceting of homoepitaxial MgO(110) layers prepared by electron beam evaporation. Surf. Sci., 558:211, 2004.

    Google Scholar 

  117. Michael P. Zach, Kwok H. Ng, and Reginald M. Penner. Molybdenum nanowires by electrodeposition. Science, 290:2120, 2000.

    Google Scholar 

  118. J. Dekoster, B. Degroote, H. Pattyn, G. Langouche, A. Vantomme, and S. Degroote. Step decoration during deposition of Co on Ag(001) by ultralow energy ion beams. App. Phys. Lett., 75:938, 1999.

    Google Scholar 

  119. P. Gambardella, M. Blanc, H. Brune, K. Kuhnke, and K. Kern. One-dimensional metal chains on Pt vicinal surfaces. Phys. Rev. B, 61:2254, 2000.

    Google Scholar 

  120. D. Y. Petrovykh, F. J. Himpsel, and T. Jung. Width distribution of nanowires grown by step decoration. Surf. Sci., 407:189, 1998.

    Google Scholar 

  121. E. C. Walter, B. J. Murray, F. Favier, G. Kaltenpoth, M. Grunze, and R. M. Penner. Noble and coinage metal nanowires by electrochemical step edge decoration. J. Phys. Chem. B, 106:11407, 2002.

    Google Scholar 

  122. E. J. Menke, Q. Li, and R. M. Penner. Bismuth telluride (Bi2Te3) nanowires synthesized by cyclic electrodeposition/stripping coupled with step edge decoration. Nano Letters, 4:2009, 2004.

    Google Scholar 

  123. Frederic Juillerat, Harun H Solak, Paul Bowen, and Heinrich Hofmann. Fabrication of large-area ordered arrays of nanoparticles on patterned substrates. Nanotechnology, 16:1311, 2005.

    Google Scholar 

  124. D. Xia, A. Biswas, D. Li, and S.R.J. Brueck. Directed self-assembly of silica nanoparticles into nanometer-scale patterned surfaces using spin-coating. Adv. Mat., 16:1427, 2004.

    Google Scholar 

  125. Pascale A. Maury, David N. Reinhoudt, and Jurriaan Huskens. Assembly of nanoparticles on patterned surfaces by noncovalent interactions. Curr. Op. Coll. Int. Sci., 13:74, 2008.

    Google Scholar 

  126. Jinan Chai, Dong Wang, Xiangning Fan, and Jillian M. Buriak. Assembly of aligned linear metallic patterns on silicon. Nat. Nano., 2:500, 2007.

    Google Scholar 

  127. R. Bennewitz. Structured surfaces of wide band gap insulators as templates for overgrowth of adsorbates. J. Phys. Condens. Mat., 18:R417, 2006.

    Google Scholar 

  128. Jason R. Heffelfinger and C. Barry Carter. Mechanisms of surface faceting and coarsening. Surf. Sci., 389:188, 1997.

    Google Scholar 

  129. L Nony, R Bennewitz, O Pfeiffer, E Gnecco, A Baratoff, E Meyer, T Eguchi, A Gourdon, and C Joachim. Cu-TBPP and PTCDA molecules on insulating surfaces studied by ultra-high-vacuum non-contact AFM. Nanotechnology, 15:S91, 2004.

    Google Scholar 

  130. R. C. Barrett and C. F. Quate. Imaging polished sapphire with atomic force microscopy. J. Vac. Sci. Tech. A, 8:400, 1990.

    Google Scholar 

  131. A. Sugawara and K. Mae. Surface morphology of epitaxial LiF(110) and CaF\(_2\)(110) layers. J. Vac. Sci. Tech. B, 23:443, 2005.

    Google Scholar 

  132. Akira Sugawara, T. Coyle, G. G. Hembree, and M. R. Scheinfein. Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates. App. Phys. Lett., 70:1043, 1997.

    Google Scholar 

  133. A. Sugawara. Quasi-one-dimensional cobalt particle arrays embedded in 5 nm-wide gold nanowires. IEEE Trans. Mag., 37:2123, 2001.

    Google Scholar 

  134. Takeshi Kitahara, Akira Sugawara, Haruyuki Sano, and Goro Mizutani. Anisotropic optical second-harmonic generation from the Au nanowire array on the NaCl(110) template. App. Surf. Sci., 219:271, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Anghinolfi .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anghinolfi, L. (2012). Introduction. In: Self-Organized Arrays of Gold Nanoparticles. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30496-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30496-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30495-8

  • Online ISBN: 978-3-642-30496-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics