Skip to main content

Throughput and Sensing Bandwidth Tradeoff in Cognitive Radio Networks

  • Conference paper
Book cover Wireless Internet (WICON 2011)

Abstract

Within the sequential sensing and transmission paradigm (SSTP), spectrum sensing over the whole primary user (PU) band always suspends secondary user (SU) data transmission in the sensing interval. Delay incurred by this kind of suspension may be intolerable to delay sensitive SU services. To alleviate this problem, we adopt a parallel sensing and transmission paradigm (PSTP), within which the SU transmits and senses simultaneously. In this paper, we investigate the relationship between the achievable SU throughput and bandwidth allocated for spectrum sensing within the PSTP, under the constraint that the PU is sufficiently protected. We also study the delay improvements of the PSTP over that of the SSTP. Both theoretical analyses and simulation results that there exists an optimal sensing bandwidth that maximizes the achievable SU throughput within the PSTP. Furthermore, compared to the SSTP, the SU delay is reduced by using the PSTP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FCC, Spectrum policy task force report (November 2002), http://www.fcc.gov/sptf/files/SEWGFinalReport-1.pdf

  2. FCC, Notice of proposed rule making FCC 04-113: Unlicensed operation in the TV broadcast bands (ET Docket No.04-186) (May 2004), http://www.naic.edu/~phil/rfi/fccactions/FCC-04-113A1.pdf

  3. Yücek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surveys Tuts. 11(1), 116–130 (2009)

    Article  Google Scholar 

  4. Zeng, Y.H., Liang, Y.C., Lei, Z., Oh, S.W., Chin, F., Sun, S.: Worldwide regulatory and standardization activities on cognitive radio. In: DySPAN, Singapore, pp. 1–9 (April 2010)

    Google Scholar 

  5. Ma, J., Li, G.Y., Juang, B.H.: Signal Processing in Cognitive Radio. IEEE Proc. 97(5), 805–823 (2009)

    Article  Google Scholar 

  6. Liang, Y.C., Zeng, Y.H., Peh, E.C.Y., Hoang, A.T.: Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans. Wireless Commun. 7(4), 1326–1337 (2008)

    Article  Google Scholar 

  7. Hoang, A.T., Liang, Y.C., Zeng, Y.H.: Adaptive joint scheduling of spectrum sensing and data transmission in cognitive radio networks. IEEE Trans. Commun. 58(1), 235–246 (2010)

    Article  Google Scholar 

  8. Choi, K.W.: Adaptive sensing technique to maximize spectrum utilization in cognitive radio. IEEE Trans. Veh. Technol. 59(2), 992–998 (2010)

    Article  Google Scholar 

  9. Shen, J., Jiang, T., Liu, S., Zhong, Z.: Maximum channel throughput via cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wireless Commun. 8(10), 5166–5175 (2009)

    Article  Google Scholar 

  10. Kang, X., Liang, Y.C., Garg, H.K., Zhang, L.: Sensing based spectrum sharing in cognitive radio networks. IEEE Trans. Veh. Technol. 58(8), 4649–4654 (2009)

    Article  Google Scholar 

  11. Ganesan, G., Li, Y., Bing, B., Li, S.: Spatiotemporal sensing in cognitive radio networks. IEEE J. Sel. Areas Commun. 26(1), 5–12 (2008)

    Article  Google Scholar 

  12. Li, H., Dai, H., Li, C.: Collaborative quickest spectrum sensing via random broadcast in cognitive radio systems. IEEE Trans. Wireless Commun. 9(7), 2338–2348 (2010)

    Article  Google Scholar 

  13. Yin, W., Ren, P.: A suboptimal spectrum sensing scheme for OFDM signal in cognitive radios. In: Globecom, Miami, pp. 1–6 (December 2010)

    Google Scholar 

  14. Urkowitz, H.: Energy detection of unknown deterministic signals. IEEE Proc. 55(4), 523–531 (1967)

    Article  Google Scholar 

  15. Proakis, J.G.: Digital Communication, 4th edn., translated by Junli Zhang etc. Publishing House of Electronic Industry (2006)

    Google Scholar 

  16. ETSI EN 300 744 V1.6.1, Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television, http://www.dvb.org/technology/standards/index.xml

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Yin, W., Ren, P., Yan, S. (2012). Throughput and Sensing Bandwidth Tradeoff in Cognitive Radio Networks. In: Ren, P., Zhang, C., Liu, X., Liu, P., Ci, S. (eds) Wireless Internet. WICON 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30493-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30493-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30492-7

  • Online ISBN: 978-3-642-30493-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics