Skip to main content

Potential Applications of Carbon Nanotube Arrays

  • Chapter
  • First Online:
Aligned Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

  • 2190 Accesses

Abstract

Aligned CNT assemblies have many applications besides what were discussed in the previous chapters. In this chapter, we introduce some potential applications of aligned CNTs, which is possible from theoretical point of view but might take a long time to realize because of the immature of the needed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74(25), 3803–3805 (1999)

    ADS  Google Scholar 

  2. M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)

    ADS  Google Scholar 

  3. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (Nov 1998)

    ADS  Google Scholar 

  4. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997)

    Google Scholar 

  5. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678–680 (1996)

    ADS  Google Scholar 

  6. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    Google Scholar 

  7. C. Wei, K. Cho, D. Srivastava, Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67(11), 115407 (2003)

    ADS  Google Scholar 

  8. B.M. Nardelli, B.I. Yakobson, J. Bernholc, Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57(8), R4277–R4280 (1998)

    ADS  Google Scholar 

  9. M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Patzke, D.C. Meyer, Materials: carbon nanotubes in an ancient damascus sabre. Nature 444(7117), 286–286 (2006)

    Google Scholar 

  10. K. Sanderson, Sharpest cut from nanotube sword. Nature (2006). News at http://dx.doi.org/10.1038/news061113-11

  11. E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)

    ADS  Google Scholar 

  12. L. Jin, C. Bower, O. Zhou, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73(9), 1197–1199 (1998)

    ADS  Google Scholar 

  13. R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330(3–4), 219–225 (2000)

    ADS  Google Scholar 

  14. B. Safadi, R. Andrews, E.A. Grulke, Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J. Appl. Polym. Sci. 84(14), 2660–2669 (2002)

    Google Scholar 

  15. A.R. Bhattacharyya, T. Sreekumar, T. Liu, S. Kumar, L.M. Ericson, R.H. Hauge, R.E. Smalley, Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44(8), 2373–2377 (2003)

    Google Scholar 

  16. E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, K. Dahmen, Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J. Appl. Phys. 94(9), 6034–6039 (2003)

    ADS  Google Scholar 

  17. X. Zhang, Q. Li, T.G. Holesinger, P.N. Arendt, J. Huang, P.D. Kirven, T.G. Clapp, R.F. DePaula, X. Liao, Y. Zhao, L. Zheng, D. Peterson, Y. Zhu, Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 19(23), 4198–4201 (2007)

    Google Scholar 

  18. Y. Dror, W. Salalha, R.L. Khalfin, Y. Cohen, A.L. Yarin, E. Zussman, Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19(17), 7012–7020 (2003)

    Google Scholar 

  19. R. Sen, B. Zhao, D. Perea, M.E. Itkis, H. Hu, J. Love, E. Bekyarova, R.C. Haddon, Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett. 4(3), 459–464 (2004)

    ADS  Google Scholar 

  20. J. Gao, A. Yu, M.E. Itkis, E. Bekyarova, B. Zhao, S. Niyogi, R.C. Haddon, Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly. J. Am. Chem. Soc. 126(51), 16698–16699 (2004)

    Google Scholar 

  21. J.J. Ge, H. Hou, Q. Li, M.J. Graham, A. Greiner, D.H. Reneker, F.W. Harris, S.Z.D. Cheng, Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J. Am. Chem. Soc. 126(48), 15754–15761 (2004)

    Google Scholar 

  22. M.D. Lynch, D.L. Patrick, Organizing carbon nanotubes with liquid crystals. Nano Lett. 2(11), 1197–1201 (2002)

    ADS  Google Scholar 

  23. X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mat. Sci. Eng. R-Rep. 49(4), 89–112 (2005)

    Google Scholar 

  24. M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700), 1358–1361 (2004)

    ADS  Google Scholar 

  25. M.B. Bazbouz, G.K. Stylios, Novel mechanism for spinning continuous twisted composite nanofiber yarns. Eur. Polym. J. 44(1), 1–12 (2008)

    Google Scholar 

  26. K. Jiang, Q. Li, S. Fan, Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419(6909), 801–801 (2002)

    ADS  Google Scholar 

  27. Y.-L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276–278 (2004)

    ADS  Google Scholar 

  28. F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, P. Willis, Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 15(14), 1161–1165 (2003)

    Google Scholar 

  29. R.B. Pipes, P. Hubert, Helical carbon nanotube arrays: mechanical properties. Compos. Sci. Technol. 62(3), 419–428 (2002)

    Google Scholar 

  30. J.W.S. Hearle, P. Grosberg, S. Backer, Structural Mechanics of Fibers, Yarns, and Fabrics (Wiley-Interscience, New York, 1969)

    Google Scholar 

  31. J.-P. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, L. Forró, Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (Feb 1999)

    ADS  Google Scholar 

  32. R.B. Pipes, P. Hubert, Scale effects in carbon nanostrutures: self-similar analysis. Nano Lett. 3(2), 239–243 (2003)

    ADS  Google Scholar 

  33. B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495), 1331–1334 (2000)

    ADS  Google Scholar 

  34. K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007)

    ADS  Google Scholar 

  35. S. Kumar, T.D. Dang, F.E. Arnold, A.R. Bhattacharyya, B.G. Min, X. Zhang, R.A. Vaia, C. Park, W.W. Adams, R.H. Hauge, R.E. Smalley, S. Ramesh, P.A. Willis, Synthesis, structure, and properties of PBO/SWNT composites. Macromolecules 35(24), 9039–9043 (2002)

    ADS  Google Scholar 

  36. L.-Q. Liu, M. Eder, I. Burgert, D. Tasis, M. Prato, H.D. Wagner, One-step electrospun nanofiber-based composite ropes. Appl. Phys. Lett., 90(8), 083108 (2007)

    Google Scholar 

  37. J. Jia, J. Zhao, G. Xu, J. Di, Z. Yong, Y. Tao, C. Fang, Z. Zhang, X. Zhang, L. Zheng, Q. Li, A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon 49(4), 1333–1339 (2011)

    Google Scholar 

  38. K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, S. Fan, Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 8(2), 700–705 (2008)

    Google Scholar 

  39. L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A.N.G. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W.W. Adams, W.E. Billups, M. Pasquali, W.-F. Hwang, R.H. Hauge, J.E. Fischer, R.E. Smalley, Macroscopic, neat, single-walled carbon nanotube fibers. Science 305(5689), 1447–1450 (2004)

    ADS  Google Scholar 

  40. Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Transparent, conductive carbon nanotube films. Science 305(5688), 1273–1276 (2004)

    ADS  Google Scholar 

  41. L. Zhang, C. Feng, Z. Chen, L. Liu, K. Jiang, Q. Li, S. Fan, Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. Nano Lett. 8(8), 2564–2569 (2008)

    ADS  Google Scholar 

  42. L. Ge, S. Sethi, L. Ci, P.M. Ajayan, A. Dhinojwala, Carbon nanotube-based synthetic gecko tapes. Proc. Natl. Acad. Sci. U S A 104(26), 10792–10795 (2007)

    ADS  Google Scholar 

  43. N.M. Mohamed, L.M. Kou, Piezoresistive effect of aligned multiwalled carbon nanotubes array. J. Appl. Sci. 11(8), 1386–1390 (2011)

    ADS  Google Scholar 

  44. F.-Z. Zheng, Z.-Y. Zhou, X. Yang, Y.-K. Tang, Y. Wu, Investigation on strain-sensing suspended single-walled carbon nanotube arrays. IEEE Trans. Nanotechnol. 10(4), 694–698 (2011)

    Google Scholar 

  45. J. Choi, J. Kim, Batch-processed carbon nanotube wall as pressure and flow sensor. Nanotechnology 21(10), 105502 (2010)

    MathSciNet  ADS  Google Scholar 

  46. X. Yang, Z. Zhou, D. Wang, X. Liu, High sensitivity carbon nanotubes flow-rate sensors and their performance improvement by coating. Sensors 10(5), 4898–4906 (2010)

    Google Scholar 

  47. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)

    ADS  Google Scholar 

  48. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes-the route toward applications. Science 297(5582), 787–792 (2002)

    Google Scholar 

  49. M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)

    ADS  Google Scholar 

  50. W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69(10), 1486–1498 (2009)

    Google Scholar 

  51. F. Du, J.E. Fischer, K.I. Winey, Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys. Rev. B 72(12), 121404 (2005)

    ADS  Google Scholar 

  52. J. Sandler, J. Kirk, I. Kinloch, M. Shaffer, A. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–5899 (2003)

    Google Scholar 

  53. E. Bichoutskaia, A.M. Popov, Y.E. Lozovik, Nanotube-based data storage devices. Mater. Today 11(6), 38–43 (2008)

    Google Scholar 

  54. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289(5476), 94–97 (2000)

    Google Scholar 

  55. W.B. Choi, J.U. Chu, K.S. Jeong, E.J. Bae, J.-W. Lee, J.-J. Kim, J.-O. Lee, Ultrahigh-density nanotransistors by using selectively grown vertical carbon nanotubes. Appl. Phys. Lett. 79(22), 3696–3698 (2001)

    ADS  Google Scholar 

  56. X. Ho, L. Ye, S.V. Rotkin, Q. Cao, S. Unarunotai, S. Salamat, M.A. Alam, J.A. Rogers, Scaling properties in transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 10(2), 499–503 (2010)

    ADS  Google Scholar 

  57. F. Noca, J. Xu, P. Koumoutsakos, T. Werder, J. Walther, in Nanoscale ears based on artificial stereocilia, in The 140th Meeting of the Acoustical Society of America/NOISE-CON, Newport Beach, California (2000)

    Google Scholar 

  58. R.R. Boullosa, A.O. Santillá, A note on the use of novel thermoacoustic radiators for ultrasonic experiments: the importance of phase in a focused field. Eur. J. Phys. 27(1), 95 (2006)

    Google Scholar 

  59. H.D. Arnold, I.B. Crandall, The thermophone as a precision source of sound. Phys. Rev. 10(1) 22–38 (1917)

    Google Scholar 

  60. P. Liu, L. Liu, Y. Wei, K. Liu, Z. Chen, K. Jiang, Q. Li, S. Fan, Fast high-temperature response of carbon nanotube film and its application as an incandescent display. Adv. Mater. 21(35), 3563–3566 (2009)

    Google Scholar 

  61. L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, S. Fan, Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 8(12), 4539–4545 (2008)

    ADS  Google Scholar 

  62. E.C. Wente, The thermophone. Phys. Rev. 19(4), 333–345 (1922)

    ADS  Google Scholar 

  63. L. Xiao, P. Liu, L. Liu, Q. Li, Z. Feng, S. Fan, K. Jiang, High frequency response of carbon nanotube thin film speaker in gases. J. Appl. Phys 110(8), 084311 (2011)

    ADS  Google Scholar 

  64. A.E. Aliev, M.D. Lima, S. Fang, R.H. Baughman, Underwater sound generation using carbon nanotube projectors. Nano Lett. 10(7), 2374–2380 (2010)

    ADS  Google Scholar 

  65. V. Vesterinen, A.O. Niskanen, J. Hassel, P. Helistö, Fundamental efficiency of nanothermophones: modeling and experiments. Nano Lett. 10, 5020–5024 (2010)

    ADS  Google Scholar 

  66. K. Suzuki, S. Sakakibara, M. Okada, Y. Neo, H. Mimura, Y. Inoue, T. Murata, Study of carbon-nanotube web thermoacoustic loud speakers. Jpn. J. Appl. Phys. 50(1), 01BJ10 (2011)

    Google Scholar 

  67. H. Tian, T.-L. Ren, D. Xie, Y.-F. Wang, C.-J. Zhou, T.-T. Feng, D. Fu, Y. Yang, P.-G. Peng, L.-G. Wang, L.-T. Liu, Graphene-on-paper sound source devices. ACS Nano 5(6), 4878–4885 (2011)

    Google Scholar 

  68. H.W. Baac, J.G. Ok, H.J. Park, T. Ling, S.-L. Chen, A.J. Hart, L.J. Guo, Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation. Appl. Phys. Lett. 97(23), 234104 (2010)

    ADS  Google Scholar 

  69. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004)

    Google Scholar 

  70. J. Li, A. Cassell, L. Delzeit, J. Han, M. Meyyappan, Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles. J. Phys. Chem. B 106(36), 9299–9305 (2002)

    Google Scholar 

  71. J.K. Campbell, L. Sun, R.M. Crooks, Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 121(15), 3779–3780 (1999)

    Google Scholar 

  72. P. Britto, K. Santhanam, P. Ajayan, Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg. 41(1), 121–125 (1996)

    Google Scholar 

  73. J.M. Nugent, K.S.V. Santhanam, A. Rubio, P.M. Ajayan, Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. 1(2), 87–91 (2001)

    ADS  Google Scholar 

  74. J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 125(9), 2408–2409 (2003)

    Google Scholar 

  75. H. Luo, Z. Shi, N. Li, Z. Gu, Q. Zhuang, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem. 73(5), 915–920 (2001)

    Google Scholar 

  76. G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393(6683), 346–349 (1998)

    ADS  Google Scholar 

  77. M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low-potential stable nadh detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun. 4(10), 743–746 (2002)

    Google Scholar 

  78. Y. Lin, S. Taylor, H.P. Li, K.A.S. Fernando, L.W. Qu, W. Wang, L.R. Gu, B. Zhou, Y.P. Sun, Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 14(4), 527–541 (2004)

    Google Scholar 

  79. P. J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Improved charge transfer at carbon nanotube electrodes. Adv. Mater. 11(2), 154–157 (1999)

    Google Scholar 

  80. B.D. McNicol, D.A.J. Rand, K.R. Williams, Direct methanol-air fuel cells for road transportation. J. Power Sources 83(1–2), 15–31 (1999)

    Google Scholar 

  81. A. Gamez, D. Richard, P. Gallezot, F. Gloaguen, R. Faure, R. Durand, Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer. Electrochim. Acta. 41(2), 307–314 (1996)

    Google Scholar 

  82. J.-S. Yu, S. Kang, S.B. Yoon, G. Chai, Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. J. Am. Chem. Soc. 124, 9382–9383 (2002)

    Google Scholar 

  83. H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao, High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon 42(1), 191–197 (2004)

    Google Scholar 

  84. H. Dai, E.W. Wong, C.M. Lieber, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272(5261), 523–526 (1996)

    ADS  Google Scholar 

  85. T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358(6383), 220–222 (1992)

    ADS  Google Scholar 

  86. W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, Q. Xin, Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 40(5), 791–794 (2002)

    Google Scholar 

  87. V. Lordi, N. Yao, J. Wei, Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733–737 (2001)

    Google Scholar 

  88. N. Jha, A.L.M. Reddy, M. Shaijumon, N. Rajalakshmi, S. Ramaprabhu, Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell. Int. J. Hydrogen Energy 33(1), 427–433 (2008)

    Google Scholar 

  89. Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan, Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 18(10), 4054–4060 (2002)

    Google Scholar 

  90. R. Yu, L. Chen, Q. Liu, J. Lin, K.-L. Tan, S.C. Ng, H.S.O. Chan, G.-Q. Xu, T.S.A. Hor, Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater. 10, 718–722 (Mar. 1998)

    Google Scholar 

  91. J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan, Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 116, 7935–7936 (1994)

    Google Scholar 

  92. I. Dumitrescu, P.R. Unwin, J.V. Macpherson, Electrochemistry at carbon nanotubes: perspective and issues. Chem. Commun. 2009(45), 6886–6901 (2009)

    Google Scholar 

  93. J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta 50(15), 3049–3060 (2005)

    Google Scholar 

  94. N. Soin, S. Roy, L. Karlsson, J. McLaughlin, Sputter deposition of highly dispersed platinum nanoparticles on carbon nanotube arrays for fuel cell electrode material. Diamond Relat. Mater. 19(5–6), 595–598 (2010)

    ADS  Google Scholar 

  95. W.-C. Fang, High methanol oxidation activity of well-dispersed Pt nanoparticles on carbon nanotubes using nitrogen doping. Nanoscale Res. Lett. 5(1), 68–73 (2010)

    ADS  Google Scholar 

  96. J. Yang, D.-J. Liu, N.N. Kariuki, L.X. Chen, Aligned carbon nanotubes with built-in \(\text{FeN}_4\) active sites for electrocatalytic reduction of oxygen. Chem. Commun. 2008(3), 329–331 (2008)

    Google Scholar 

  97. H.B. Zhang, X.L. Liang, X. Dong, H.Y. Li, G.D. Lin, Multi-walled carbon nanotubes as a novel promoter of catalysts for CO/\(\text{CO}_2\) hydrogenation to alcohols. Catal. Surv. Asia 13(1), 41–58 (2009)

    Google Scholar 

  98. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009)

    ADS  Google Scholar 

  99. P. Matter, U. Ozkan, Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal. Lett. 109(3), 115–123 (2006)

    Google Scholar 

  100. F. Hu, W. Chen, End-opened carbon nanotube array supported Pd as anode for alkaline fuel cells. Electrochem. Commun. 13(9), 955–958 (2011)

    MathSciNet  Google Scholar 

  101. B. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer, Boston, 1999)

    Google Scholar 

  102. J.M. Boyea, R.E. Camacho, S.P. Turano, W.J. Ready, Carbon nanotube-based supercapacitors: technologies and markets. Nanotechnol. Law Bus. 4(1), 585–593 (2007)

    Google Scholar 

  103. C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70(11), 1480–1482 (1997)

    ADS  Google Scholar 

  104. K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11(5), 387–392 (2001)

    Google Scholar 

  105. H. Zhang, G.P. Cao, Y.S. Yang, Using a cut-paste method to prepare a carbon nanotube fur electrode. Nanotechnology 18(19), 195607 (2007)

    ADS  Google Scholar 

  106. D. Nkosi, K.I. Ozoemena, Self-assembled nano-arrays of single-walled carbon nanotube-octa(hydroxyethylthio)phthalocyaninatoiron(II) on gold surfaces: impacts of SWCNT and solution pH on electron transfer kinetics. Electrochim. Acta 53(6), 2782–2793 (2008)

    Google Scholar 

  107. T. Hiraoka, T. Yamada, K. Hata, D.N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima, Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J. Am. Chem. Soc. 128(41), 13338–13339 (2006)

    Google Scholar 

  108. S. Talapatra, S. Kar, S.K. Pal, R. Vajtai, L. Ci, P. Victor, M.M. Shaijumon, S. Kaur, O. Nalamasu, M.P. Ajayan, Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1(2), 112–116 (2006)

    ADS  Google Scholar 

  109. E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774–1785 (2007)

    Google Scholar 

  110. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)

    Google Scholar 

  111. E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44(12), 2498–2507 (2006)

    Google Scholar 

  112. V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. U S A 104(34), 13574–13577 (2007)

    ADS  Google Scholar 

  113. C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), 730–2731 (2008)

    Google Scholar 

  114. H. Zhang, G.P. Cao, Y.S. Yang, Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ. Sci. 2(9), 932–943 (2009)

    Google Scholar 

  115. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    ADS  Google Scholar 

  116. D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987–994 (2006)

    ADS  Google Scholar 

  117. Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa, Aligned mwcnt sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochem. Solid-State Lett. 10(4), A106–A110 (2007)

    Google Scholar 

  118. T. Iwasaki, T. Maki, D. Yokoyama, H. Kumagai, Y. Hashimoto, T. Asari, H. Kawarada, Highly selective growth of vertically aligned double-walled carbon nanotubes by a controlled heating method and their electric double-layer capacitor properties. Phys. Stat. Sol. (RRL) 2(2), 53–55 (2008)

    Google Scholar 

  119. L. Gao, A. Peng, Z.Y. Wang, H. Zhang, Z. Shi, Z. Gu, G. Cao, B. Ding, Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors. Solid State Commun. 146(9–10), 380–383 (2008)

    Google Scholar 

  120. H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem. Commun. 10(7), 1056–1059 (2008)

    Google Scholar 

  121. H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8(9), 2664–2668 (2008)

    ADS  Google Scholar 

  122. C.L. Pint, N.W. Nicholas, S. Xu, Z. Sun, J.M. Tour, H.K. Schmidt, R.G. Gordon, R.H. Hauge, Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49(14), 4890–4897 (2011)

    Google Scholar 

  123. Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao, S. Xie, Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ. Sci. 4(4), 1440–1446 (2011)

    Google Scholar 

  124. A. Arun, H.L. Poche, T. Idda, D. Acquaviva, M.F.-B. Badia, P. Pantigny, P. Salet, A.M. Ionescu, Tunable MEMS capacitors using vertical carbon nanotube arrays grown on metal lines. Nanotechnology 22(2), 025203 (2011)

    ADS  Google Scholar 

  125. S.R. Sivakkumar, D.-W. Kim, Polyaniline/carbon nanotube composite cathode for rechargeable lithium polymer batteries assembled with gel polymer electrolyte. J. Electrochem. Soc. 154(2), A134–A139 (2007)

    Google Scholar 

  126. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 3770–0379 (1997)

    Google Scholar 

  127. Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74(16), 2307–2309 (1999)

    ADS  Google Scholar 

  128. C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M.S. Dresselhaus, Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442), 1127–1129 (1999)

    Google Scholar 

  129. P. Chen, X. Wu, J. Lin, K.L. Tan, High \(\text{H}_2\) uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285(5424), 91–93 (1999)

    Google Scholar 

  130. M.S. Dresselhaus, K.A. Williams, P.C. Eklund, Hydrogen adsorption in carbon materials. MRS Bull. 24(11), 45 (1999)

    Google Scholar 

  131. G.G. Tibbetts, G.P. Meisner, C.H. Olk, Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon 39(15), 2291–2301 (2001)

    Google Scholar 

  132. M. Hirscher, M. Becher, M. Haluska, A. Quintel, V. Skakalova, Y.-M. Choi, U. Dettlaff-Weglikowska, S. Roth, I. Stepanek, P. Bernier, A. Leonhardt, J. Fink, Hydrogen storage in carbon nanostructures. J. Alloys Compd. 330–332, 654–658 (2002)

    Google Scholar 

  133. C.C. Ahn, Y. Ye, B.V. Ratnakumar, C. Witham, J.R.C. Bowman, B. Fultz, Hydrogen desorption and adsorption measurements on graphite nanofibers. Appl. Phys. Lett. 73(23), pp. 3378–3380 (1998)

    Google Scholar 

  134. P. Kim, C.M. Lieber, Nanotube nanotweezers. Science 286(5447), 2148–2150 (1999)

    Google Scholar 

  135. R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Carbon nanotube actuators. Science 284(5418), 1340–1344 (1999)

    ADS  Google Scholar 

  136. V.V. Deshpande, H.-Y. Chiu, H.W.C. Postma, C. Mikó, L. Forró, M. Bockrath, Carbon nanotube linear bearing nanoswitches. Nano Lett. 6(6), 1092–1095 (2006)

    ADS  Google Scholar 

  137. U. Vohrer, I. Kolaric, M.H. Haque, S. Roth, U. Detlaff-Weglikowska, Carbon nanotube sheets for the use as artificial muscles. Carbon 42(5–6), 1159–1164 (2004)

    Google Scholar 

  138. S. Gupta, M. Hughes, A.H. Windle, J. Robertson, Charge transfer in carbon nanotube actuators investigated using in situ raman spectroscopy. J. Appl. Phys. 95(4), 2038–2048 (2004)

    ADS  Google Scholar 

  139. V.H. Ebron, Z. Yang, D.J. Seyer, M.E. Kozlov, J. Oh, H. Xie, J. Razal, L.J. Hall, J.P. Ferraris, A.G. MacDiarmid, R.H. Baughman, Fuel-powered artificial muscles. Science 311(5767), 1580–1583 (2006)

    ADS  Google Scholar 

  140. G. Spinks, G. Wallace, L. Fifield, L. Dalton, A. Mazzoldi, D. De Rossi, I. Khayrullin, R. Baughman, Pneumatic carbon nanotube actuators. Adv. Mater. 14(23), 1728–1732 (2002)

    Google Scholar 

  141. S.V. Ahir, E.M. Terentjev, Photomechanical actuation in polymer-nanotube composites. Nat. Mater. 4(6), 491–495 (2005)

    ADS  Google Scholar 

  142. A.R.T.S. Courty, J. Mine, E.M. Terentjev, Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators. Europhys. Lett. 64(5), 654–660 (2003)

    ADS  Google Scholar 

  143. H. Koerner, G. Price, N.A. Pearce, M. Alexander, R.A. Vaia, Remotely actuated polymer nanocomposites: stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004)

    ADS  Google Scholar 

  144. P. Miaudet, A. Derré, M. Maugey, C. Zakri, P.M. Piccione, R. Inoubli, P. Poulin, Shape and temperature memory of nanocomposites with broadened glass transition. Science 318(5854), 1294–1296 (2007)

    ADS  Google Scholar 

  145. A.E. Aliev, J. Oh, M.E. Kozlov, A.A. Kuznetsov, S. Fang, A.F. Fonseca, R. Ovalle, M.D. Lima, M.H. Haque, Y.N. Gartstein, M. Zhang, A.A. Zakhidov, R.H. Baughman, Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323(5921), 1575–1578 (2009)

    ADS  Google Scholar 

  146. P. Mérel, J.A. Kpetsu, C. Koechlin, S. Maine, R. Haidar, J. Pélouard, A. Sarkissian, M.I. Ionescu, X. Sun, P. Laou, S. Paradis, Infrared sensors based on multi-wall carbon nanotube films. C. R. Phys. 11(5–6), 375–380 (2010)

    ADS  Google Scholar 

  147. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. U S A 106(15), 6044–6047 (2009)

    ADS  Google Scholar 

  148. J.M. Xu, Highly ordered carbon nanotube arrays and IR detection. Infrared Phys. Technol. 42(3–5), 485–491 (2001)

    ADS  Google Scholar 

  149. B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004)

    ADS  Google Scholar 

  150. V.K.K. Upadhyayula, S.G. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ. 408(1), 1–13 (2009)

    Google Scholar 

  151. B. Hinds, Dramatic transport properties of carbon nanotube membranes for a robust protein channel mimetic platform. Curr. Opin. Solid St. M. 16(1), 1–9 (2011)

    Google Scholar 

  152. F. Du, L. Qu, Z. Xia, L. Feng, L. Dai, Membranes of vertically aligned superlong carbon nanotubes. Langmuir 27(13), 8437–8443 (2011)

    Google Scholar 

  153. Y. Abdi, M. Khalilian, E. Arzi, Enhancement in photo-induced hydrophilicity of \(TiO_2\)/CNT nanostructures by applying voltage. J. Phys. D: Appl. Phys. 44(25), 255405 (2011)

    Google Scholar 

  154. A. Arun, D. Acquaviva, M. Fernñdez-Bolaós, P. Salet, H. Le-Poche, P. Pantigny, T. Idda, A. Ionescu, Carbon nanotube vertical membranes for electrostatically actuated micro-electro-mechanical devices. Microelectron. Eng. 87(5–8), 1281–1283 (2010)

    Google Scholar 

  155. A. Arun, S. Campidelli, A. Filoramo, V. Derycke, P. Salet, A.M. Ionescu, M.F. Goffman, SWNT array resonant gate MOS transistors. Nanotechnology 22(5), 055204 (2011)

    ADS  Google Scholar 

  156. F.A. Ghavanini, P. Enoksson, S. Bengtsson, P. Lundgren, Vertically aligned carbon based varactors. J. Appl. Phys. 110(2), 021101 (2011)

    ADS  Google Scholar 

  157. C.J. Hu, Y.H. Lin, C.W. Tang, M.Y. Tsai, W.K. Hsu, H.F. Kuo, ZnO-coated carbon nanotubes: Flexible piezoelectric generators. Adv. Mater. 23(26), 2941–2945 (2011)

    Google Scholar 

  158. Y. Liu, I. Janowska, T. Romero, D. Edouard, L.D. Nguyen, O. Ersen, V. Keller, N. Keller, C. Pham-Huu, High surface-to-volume hybrid platelet reactor filled with catalytically grown vertically aligned carbon nanotubes. Catal. Today 150(1–2), 133–139 (2010)

    Google Scholar 

  159. J. Luo, L.P. Mark, A.E. Giannakopulos, A.W. Colburn, J.V. Macpherson, T. Drewello, P.J. Derrick, A.S. Teh, K.B. Teo, W.I. Milne, Field ionization using densely spaced arrays of nickel-tipped carbon nanotubes. Chem. Phys. Lett. 505(4–6), 126–129 (2011)

    ADS  Google Scholar 

  160. K. Han, Y. Lee, D. Jun, S. Lee, K.W. Jung, S.S. Yang, Field emission ion source using a carbon nanotube array for micro time-of-flight mass spectrometer. Jpn. J. Appl. Phys. 50(6), 06GM04, (2011)

    Google Scholar 

  161. B.K. Sarker, M.R. Islam, F. Alzubi, S.I. Khondaker, Fabrication of aligned carbon nanotube array electrodes for organic electronic devices. Mater. Exp. 1(1), 80–85 (2011)

    Google Scholar 

  162. M. De Volder, S.H. Tawfick, D. Copic, A.J. Hart, Hydrogel-driven carbon nanotube microtransducers. Soft Matter 7(21), 9844–9847 (2011)

    ADS  Google Scholar 

  163. C. Yuana, C. Chang, Y. Song, Hazardous industrial gases identified using a novel polymer/MWNT composite resistance sensor array. Mat. Sci. Eng. B: Solid 176(11), 821–829 (2011)

    Google Scholar 

  164. A. Di Bartolomeo, M. Sarno, F. Giubileo, C. Altavilla, L. Iemmo, S. Piano, F. Bobba, M. Longobardi, A. Scarfato, D. Sannino, A.M. Cucolo, P. Ciambelli, Multiwalled carbon nanotube films as small-sized temperature sensors. J. Appl. Phys. 105, 064518 (2009)

    ADS  Google Scholar 

  165. C. Kocabas, H. sik Kim, T. Banks, J.A. Rogers, A.A. Pesetski, J.E. Baumgardner, S.V. Krishnaswamy, H. Zhang, Radio frequency analog electronics based on carbonnanotube transistors. Proc. Natl. Acad. Sci. U S A 105(5), 1405–1409 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, Z., Lan, Y., Wang, Y. (2012). Potential Applications of Carbon Nanotube Arrays. In: Aligned Carbon Nanotubes. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30490-3_9

Download citation

Publish with us

Policies and ethics