Skip to main content

Properties and Applications of Aligned Carbon Nanotube Arrays

  • Chapter
  • First Online:
Aligned Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

  • 2253 Accesses

Abstract

Aligned CNT arrays have unique properties over individual CNTs and have wider applications, including field emission and flat screens, ultracapacitors, nanoelectrode arrays, fuel cells, solar cells, transistors, chemical and biological sensors, due to the ordering of their aligned structures. In this chapter, we focus on the applications of the well-aligned CNT arrays and talk about these applications in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E.Smalley, Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605), 147–150 (1996)

    Google Scholar 

  2. C.L. Cheung, J.H. Hafner, C.M. Lieber, Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging. Proc. Natl. Acad. Sci. USA 97(8), 3809–3913 (2000)

    ADS  Google Scholar 

  3. N.R. Wilson, J.V. Macpherson, Carbon nanotube tips for atomic force microscopy. Nat. Nanotechnol. 4(8), 483–491 (2009)

    ADS  Google Scholar 

  4. A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim, D. Tománek, Unraveling nanotubes: field emission from an atomic wire. Science 269(5230), 1550–1553 (1995)

    ADS  Google Scholar 

  5. H. Ko, Z. Zhang, J.C. Ho, K. Takei, R. Kapadia, Y.-L. Chueh, W. Cao, B.A. Cruden, A. Javey, Flexible carbon-nanofiber connectors with anisotropic adhesion properties. Small 6(1), 22–26 (2010)

    Google Scholar 

  6. P.M. Ajayan, O.Z. Zhou, Applications of carbon nanotubes. in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Topics in Applied Physics, vol. 80, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Springer, Berlin, 2001), pp. 391–425

    Google Scholar 

  7. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000)

    Google Scholar 

  8. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)

    ADS  Google Scholar 

  9. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407), 1513–1516 (1999)

    Google Scholar 

  10. P.G. Collins, A. Zettl, H. Bando, A. Thess, R.E. Smalley, Nanotube nanodevice. Science 278(5335), 100–102 (1997)

    Google Scholar 

  11. M.S. Fuhrer, J. Nygård, L. Shih, M. Forero, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen, Crossed nanotube junctions. Science 288(5465), 494–497 (2000)

    ADS  Google Scholar 

  12. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003)

    ADS  Google Scholar 

  13. S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)

    ADS  Google Scholar 

  14. Z. Chen, J. Appenzeller, Y.-M. Lin, J. Sippel-Oakley, A.G. Rinzler, J. Tang, S.J. Wind, P.M. Solomon, P. Avouris, An integrated logic circuit assembled on a single carbon nanotube. Science 311(5768), 1735 (2006)

    Google Scholar 

  15. Y. Takagi, T. Uda, T. Ohno, Carbon nanotube motors driven by carbon nanotube. J. Chem. Phys. 128(19), 194704 (2008)

    ADS  Google Scholar 

  16. P. Avouris, Molecular electronics with carbon nanotubes. Acc. Chem. Res. 35(12), 1026–1034 (2002)

    Google Scholar 

  17. P.L. McEuen, Nanotechnology: carbon-based electronics. Nature 393(6680), 15–17 (1998)

    ADS  Google Scholar 

  18. H. Shiozawa, T. Pichler, C. Kramberger, M. Rümmeli, D. Batchelor, Z. Liu, K. Suenaga, H. Kataura, S.R.P. Silva, Screening the missing electron: nanochemistry in action. Phys. Rev. Lett. 102, 046804 (2009)

    ADS  Google Scholar 

  19. L. Sun, F. Banhart, A.V. Krasheninnikov, J.A. Rodriguez-Manzo, M. Terrones, P.M. Ajayan, Carbon nanotubes as high-pressure cylinders and nanoextruders. Science 312(5777), 1199–1202 (2006)

    ADS  Google Scholar 

  20. P. Kim, C.M. Lieber, Nanotube nanotweezers. Science 286(5447), 2148–2150 (1999)

    Google Scholar 

  21. J.R. Wood, M.D. Frogley, E.R. Meurs, A.D. Prins, T. Peijs, D.J. Dunstan, H.D. Wagner, Mechanical response of carbon nanotubes under molecular and macroscopic pressures. J. Phys. Chem. B 103(47), 10388–10392 (1999)

    Google Scholar 

  22. E. Cobas, M.S. Fuhrera, Microwave rectification by a carbon nanotube schottky diode. Appl. Phys. Lett. 93, 043120 (2008)

    ADS  Google Scholar 

  23. D. Cai, J.M. Mataraza, Z.-H. Qin, Z. Huang, J. Huang, T.C. Chiles, D. Carnahan, K. Kempa, Z. Ren, Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods 2, 449–454 (2005)

    Google Scholar 

  24. D. Cai, C.A. Doughty, T.B. Potocky, F.J. Dufort, Z. Huang, D. Blair, K. Kempa, Z.F. Ren, T.C. Chiles, Carbon nanotube-mediated delivery of nucleic acids does not result in non-specific activation of B lymphocytes. Nanotechnology 18(36), 365101 (2007)

    Google Scholar 

  25. J.A. Rojas-Chapana, M.A. Correa-Duarte, Z. Ren, K. Kempa, M. Giersig, Enhanced introduction of gold nanoparticles into vital acidothiobacillus ferrooxidans by carbon nanotube-based microwave electroporation. Nano Lett. 4(5), 985–988 (2004)

    Google Scholar 

  26. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes-the route toward applications. Science 297(5582), 787–792 (2002)

    Google Scholar 

  27. M. Terrones, Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res. 33, 419–501 (2003)

    ADS  Google Scholar 

  28. Y. Nakayama, S. Akita, Nanoengineering of carbon nanotubes for nanotools. New J. Phys. 5, 128 (2003)

    ADS  Google Scholar 

  29. J. Robertson, Realistic applications of CNTs. Mater. Today 7(10), 46–52 (2004)

    Google Scholar 

  30. A. Merkoçi, M. Pumera, X. Llopis, B. Pérez, M. del Valle, S. Alegret, New materials for electrochemical sensing VI: carbon nanotubes. TrAC 24(9), 826–838 (2005)

    Google Scholar 

  31. P.J. Burke, C. Rutherglen, Z. Yu, Single-walled carbon nanotubes: applications in high frequency electronics. Int. J. High Speed Electron. Syst. 16(4), 977–999 (2006)

    Google Scholar 

  32. K. Ishibashi, S. Moriyama, D. Tsuya, T. Fuse, M. Suzuki, Quantum-dot nanodevices with carbon nanotubes. J. Vac. Sci. Technol. A 24(4), 1349–1355 (2006)

    Google Scholar 

  33. B. Mahar, C. Laslau, R. Yip, Y. Sun, Development of carbon nanotube-based sensors—a review. IEEE Sens. J. 7, 266–284 (2007)

    Google Scholar 

  34. B.L. Allen, P.D. Kichambare, A. Star, Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19(11), 1439–1451 (2007)

    Google Scholar 

  35. D. Vairavapandian, P. Vichchulada, M.D. Lay, Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. Anal. Chim. Acta 626(2), 119–129 (2008)

    Google Scholar 

  36. H. Xie, L. Chen, Review on the preparation and thermal performances of carbon nanotube contained nanofluids. J. Chem. Eng. Data 56, 1030–1041 (2011)

    MathSciNet  Google Scholar 

  37. F. Kreupl, Carbon nanotubes in microelectronic applications. in Carbon Nanotube Devices: Properties, Modeling, Integration and Applications, ed. by C. Hierold (Wiley-VCH, Weinheim, 2008), pp. 1–41

    Google Scholar 

  38. C. Stampfer, C. Hierold, Electromechanical cabron nanotube transducers. in Carbon Nanotube Devices: Properties, Modeling, Integration and Applications. Advanced Micro and Nanosystems, vol. 8, ed. by C. Hierold (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  39. A. Jungen, C. Hierold, Carbon nanotube direct integration into microsystems. in Carbon Nanotube Devices: Properties, Modeling, Integration and Applications. Advanced Micro and Nanosystems, vol. 8, ed. by C. Hierold (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  40. C. Roman, S. Roche, A. Rubio, Modeling the properties of carbon nanotubes for sensor-based devices. in Carbon Nanotube Devices: Properties, Modeling, Integration and Applications. Advanced Micro and Nanosystems, vol. 8, ed. by C. Hierold (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  41. J. Robertson, Carbon nanotube field emission devices. in Carbon Nanotube Devices: Properties, Modeling, Integration and Applications. Advanced Micro and Nanosystems, vol. 8, ed. by C. Hierold (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  42. F. Léonard, The Physics of Carbon Nanotube Devices. Micro and Nano Technologies (William Andrew, Norwich, 2009)

    Google Scholar 

  43. E. ōsawa (ed.), Perspectives of Fullerene Nanotechnology (Kluwer Academic, Dordrecht, 2002)

    Google Scholar 

  44. P. Bernier, D. Carroll, G. Kim, S. Roth (eds.), Nanotube-Based Devices. Materials Research Society Symposium Proceedings, vol. 772 (Materials Research Society, Warrendale, 2003)

    Google Scholar 

  45. C.V. Nguyen, Appplications in scanning probe microscopy, in Carbon Nanotubes: Science and Applications, ed. by M. Meyyappan (CRC Press, Boca Raton, 2004)

    Google Scholar 

  46. T. Yamada, Nanoelectronics applications. in Carbon Nanotubes: Science and Applications, ed. by M. Meyyappan (CRC Press, Boca Raton, 2004)

    Google Scholar 

  47. M. Freitag, Carbon nanotube electronics and devices. in Carbon Nanotubes Properties and Applications, ed. by M.J. O’Connell (CRC Press, Boca Raton, 2006)

    Google Scholar 

  48. P. Russer, N. Fichtner, Nanoelectronics in radio-frequency technology. IEEE Microw. Mag. 10, 119–135 (2010)

    Google Scholar 

  49. M.P. Anantram, F. L’eonard, Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69(3), 507–561 (2006)

    Google Scholar 

  50. C. Hierold (ed.), Carbon Nanotube Devices: Properties, Modeling, Integration and Applications. Advanced Micro and Nanosystems, vol. 8 (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  51. A. Mandelis, C. Christofides, Physics, Chemistry and Technology of Solid State Gas Sensor Devices (Wiley, New York, 1993)

    Google Scholar 

  52. K. Balasubramanian, E.J.H. Lee, R.T. Weitz, M. Burghard, K. Kern, Carbon nanotube transistors—chemical functionalization and device characterization. Phys. Stat. Sol. A 205(3), 633–646 (2008)

    Google Scholar 

  53. M. Burghard, H. Klauk, K. Kern, Carbon-based field-effect transistors for nanoelectronics. Adv. Mater. 21(25–26), 2586–2600 (2009)

    Google Scholar 

  54. S. Ji, C. Liu, B. Zhang, F. Yang, J. Xu, J. Long, C. Jin, D. Fu, Q. Ni, X. Yu, Carbon nanotubes in cancer diagnosis and therapy. BBA Rev. Cancer 1806(1), 29–35 (2010)

    Google Scholar 

  55. G. Lota, K. Fic, E. Frackowiak, Carbon nanotubes and their composites in electrochemical applications. Energy Environ. Sci. 4(5), 1592–1605 (2011)

    Google Scholar 

  56. A.I. Zhbanov, N.I. Sinitsyn, G.V. Torgashov, Nanoelectronic devices based on carbon nanotubes. Radiophys. Quantum Electron. 47(5–6), 435–452 (2004)

    Google Scholar 

  57. L.A. Chernozatonskii, Y.V. Gulyaev, Z.J. Kosakovskaja, N.I. Sinitsyn, G.V. Torgashov, Y.F. Zakharchenko, E.A. Fedorov, V.P. Val’chuk, Electron field emission from nanofilament carbon films. Chem. Phys. Lett. 233(1–2), 63–68 (1995)

    Google Scholar 

  58. W.A. de Heer, A. Châtelain, D. Ugarte, A carbon nanotube field-emission electron source. Science 270(5239), 1179–1180 (1995)

    ADS  Google Scholar 

  59. L.A. Chernozatonskii, Z.Y. Kosakovskaya, Y.V. Gulyaev, N.I. Sinitsyn, G.V. Torgashov, Y.F. Zakharchenko, Influence of external factors on electron field emission from thin-film nanofilament carbon structures. J. Vac. Sci. Technol. B 14(3), 2080–2082 (1996)

    Google Scholar 

  60. P.G. Collins, A. Zettl, A simple and robust electron beam source from carbon nanotubes. Appl. Phys. Lett. 69(13), 1969–1971 (1996)

    ADS  Google Scholar 

  61. H. Schmid, H.-W. Fink, Carbon nanotubes are coherent electron sources. Appl. Phys. Lett. 70(20), 2679–2680 (1997)

    ADS  Google Scholar 

  62. W.A. de Heer, J. Bonard, K. Fauth, A. Châtelain, D. Ugarte, L. Forró, Electron field emitters based on carbon nanotube films. Adv. Mater. 9(1), 87–89 (1997)

    Google Scholar 

  63. Y.V. Gulyaev, N.I. Sinitsyn, G.V. Torgashov, S.T. Mevlyut, A.I. Zhbanov, Y.F. Zakharchenko, Z.Y. Kosakovskaya, L.A. Chernozatonskii, O.E. Glukhova, I.G. Torgashov, Work function estimate for electrons emitted from nanotube carbon cluster films. J. Vac. Sci. Technol. B 15(2), 422–424 (1997)

    Google Scholar 

  64. P.G. Collins, A. Zettl, Unique characteristics of cold cathode carbon-nanotube-matrix field emitters. Phys. Rev. B 55(15), 9391–9399 (1997)

    ADS  Google Scholar 

  65. Y. Saito, K. Hamaguchi, K. Hata, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasuya, Y. Nishina, Conical beams from open nanotubes. Nature 389(6651), 554–555 (1997)

    ADS  Google Scholar 

  66. Y.H.L. Lee, S.G. Kim, D. Tomnek, Field-induced unraveling of carbon nanotubes. Chem. Phys. Lett. 265(6), 667–672 (1997)

    Google Scholar 

  67. S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, J.Y. Huang, D.Z. Wang, Z.F. Ren, Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes. Appl. Phys. Lett. 84(3), 413–415 (2004)

    ADS  Google Scholar 

  68. S.H. Jo, J.Y. Huang, S. Chen, G.Y. Xiong, D.Z. Wang, Z.F. Ren, Field emission of carbon nanotubes grown on carbon cloth. J. Vac. Sci. Technol. B 23(6), 2363–2368 (2005)

    Google Scholar 

  69. B. Zeng, G. Xiong, S. Chen, W.Z. Wang, D.Z. Wang, Z.F. Ren, Enhancement of field emission of aligned carbon nanotubes by thermal oxidation. Appl. Phys. Lett. 89(22), 223119 (2006)

    Google Scholar 

  70. J.-M. Bonard, H. Kind, T. Stckli, L.-O. Nilsson, Field emission from carbon nanotubes: the first five years. Solid-State Electron. 45(6), 893–914 (2001)

    Google Scholar 

  71. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)

    ADS  Google Scholar 

  72. N. de Jonge, J.M. Bonard, Carbon nanotube electron sources and applications. Phil. Tr. R. Soc. S. A 362(1823), 2239–2266 (2004)

    Google Scholar 

  73. W.I. Milne, K.B.K. Teo, G.A.J. Amaratunga, P. Legagneux, L. Gangloff, J.P. Schnell, V. Semet, V.T. Binh, O. Groening, Carbon nanotubes as field emission sources. J. Mater. Chem. 14(6), 933–943 (2004)

    Google Scholar 

  74. C.J. Edgcombe, U. Valdrè, Microscopy and computational modelling to elucidate the enhancement factor for field electron emitters. J. Microsc. 203(2), 188–194 (2001)

    MathSciNet  Google Scholar 

  75. J.-M. Bonard, F. Maier, T. Stöckli, A. Châtelain, W.A. de Heer, J.-P. Salvetat, L. Forró, Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy 73(1–4), 7–15 (1998)

    Google Scholar 

  76. P. Sarrazin, Field emission. in Carbon Nanotubes: Science and Applications, ed. by M. Meyyappan (CRC Press, Boca Raton, 2004)

    Google Scholar 

  77. J.M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury, N. Weiss, Carbon nanotube films as electron field emitters. Carbon 40(10), 1715–1728 (2002)

    Google Scholar 

  78. Y.H. Lee, S.C. Lim, K.H. An, W.S. Kim, H.J. Jeong, Y.M. Shin, H.-G. Lee, J.M. Kim, Applications of carbon nanotubes to electron emitters. New Diam. Front. Carbon Technol. 12(4), 181–207 (2002)

    Google Scholar 

  79. K.A. Dean, B.R. Chalamala, Current saturation mechanisms in carbon nanotube field emitters. Appl. Phys. Lett. 76(3), 375–377 (2000)

    ADS  Google Scholar 

  80. J.-M. Bonard, M. Croci, I. Arfaoui, O. Noury, D. Sarangi, A. Châtelain, Can we reliably estimate the emission field and field enhancement factor of carbon nanotube film field emitters? Diam. Relat. Mater. 11(3–6), 763–768 (2002)

    Google Scholar 

  81. S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, D.Z. Wang, Z.F. Ren, Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett. 82(20), 3520–3522 (2003)

    Google Scholar 

  82. M. Chhowalla, C. Ducati, N.L. Rupesinghe, K.B.K. Teo, G.A.J. Amaratunga, Field emission from short and stubby vertically aligned carbon nanotubes. Appl. Phys. Lett. 79(13), 2079–2081 (2001)

    ADS  Google Scholar 

  83. J.S. Suh, K.S. Jeong, J.S. Lee, I. Han, Study of the field-screening effect of highly ordered carbon nanotube arrays. Appl. Phys. Lett. 80(13), 2392–2394 (2002)

    ADS  Google Scholar 

  84. M.A. Guillorn, A.V. Melechko, V.I. Merkulov, D.K. Hensley, M.L. Simpson, D.H. Lowndes, Self-aligned gated field emission devices using single carbon nanofiber cathodes. Appl. Phys. Lett. 81(19), 3660–3662 (2002)

    ADS  Google Scholar 

  85. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, K. Kern, Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 76(15), 2071–2073 (2000)

    ADS  Google Scholar 

  86. O. Gröning, O.M. Kúttel, C. Emmenegger, P. Gröning, L. Schlapbach, Field emission properties of carbon nanotubes. J. Vac. Sci. Technol. B 18(2), 665–678 (2000)

    Google Scholar 

  87. J.-M. Bonard, N. Weiss, H. Kind, T. Stöckli, L. Forró, K. Kern, A. Châtelain, Tuning the field emission properties of patterned carbon nanotube films. Adv. Mater. 13(3), 184–188 (2001)

    Google Scholar 

  88. W.J. Yu, Y.S. Cho, G.S. Choi, D. Kim, Patterned carbon nanotube field emitter using the regular array of an anodic aluminium oxide template. Nanotechnology 16(5), S291–S295 (2005)

    ADS  Google Scholar 

  89. T.C. Cheng, J. Shieh, W.J. Huang, M.C. Yang, M.H. Cheng, H.M. Lin, M.N. Chang, Hydrogen plasma dry etching method for field emission application. Appl. Phys. Lett. 88(26), 263118 (2006)

    ADS  Google Scholar 

  90. Z. Chen, D. den Engelsen, P.K. Bachmann, V. van Elsbergen, I. Koehler, J. Merikhi, D.U. Wiechert, High emission current density microwave-plasma-grown carbon nanotube arrays by postdepositional radio-frequency oxygen plasma treatment. Appl. Phys. Lett. 87(24), 243104 (2005)

    ADS  Google Scholar 

  91. Y. Tu, Z.P. Huang, D.Z. Wang, J.G. Wen, Z.F. Ren, Growth of aligned carbon nanotubes with controlled site density. Appl. Phys. Lett. 80(21), 4018–4020 (2002)

    ADS  Google Scholar 

  92. Y. Liu, S. Fan, Enhancement of field emission properties of cyanoacrylatecarbon nanotube arrays by laser treatment. Nanotechnology 15(8), 1033–1037 (2004)

    Google Scholar 

  93. S.-C. Kung, K.C. Hwang, I.N. Lin, Oxygen and ozone oxidation-enhanced field emission of carbon nanotubes. Appl. Phys. Lett. 80(25), 4819–4821 (2002)

    ADS  Google Scholar 

  94. K.S. Hazra, N.A. Koratkar, D.S. Misra, Improved field emission from multiwall carbon nanotubes with nano-size defects produced by ultra-low energy ion bombardment. Carbon 49, 4760–4766 (2011)

    Google Scholar 

  95. Y. Saito, Carbon nanotube field emitter. J. Nanosci. Nanotechnol. 3(1–2), 39–50 (2003)

    ADS  Google Scholar 

  96. Y. Saito, S. Uemura, Field emission from carbon nanotubes and its application to electron sources. Carbon 38(2), 169–182 (2000)

    Google Scholar 

  97. A.V. Eletskii, Carbon nanotube-based electron field emitters. Phys. Usp. 53, 2010 (2010)

    Google Scholar 

  98. Y. Saitō (ed.), Carbon Nanotube and Related Field Emitters: Fundamentals and Applications (Wiley-VCH, Weinheim, 2010)

    Google Scholar 

  99. Y. Shiratori, H. Hiraoka, Y. Takeuchi, S. Itoh, M. Yamamoto, One-step formation of aligned carbon nanotube field emitters at \(400\,^{\circ }\)C. Appl. Phys. Lett. 82(15), 2485–2487 (2003)

    Google Scholar 

  100. S.-H. Jeong, H.-Y. Hwang, K.-H. Lee, Y. Jeong, Template-based carbon nanotubes and their application to a field emitter. Appl. Phys. Lett. 78(14), 2052–2054 (2001)

    ADS  Google Scholar 

  101. Y. Saito, S. Uemura, K. Hamaguchi, Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn. J. Appl. Phys. 37, L346–L348 (1998)

    ADS  Google Scholar 

  102. H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Field emission from well-aligned, patterned, carbon nanotube emitters. Appl. Phys. Lett. 76(13), 1776–1778 (2000)

    ADS  Google Scholar 

  103. J.-M. Bonard, J.-P. Salvetat, T. Stöckli, W.A. de Heer, L. Forró, A. Châtelain, Field emission from single-wall carbon nanotube films. Appl. Phys. Lett. 73(7), 918–920 (1998)

    ADS  Google Scholar 

  104. X. Xu, G.R. Brandes, A method for fabricating large-area, patterned, carbon nanotube field emitters. Appl. Phys. Lett. 74(17), 2549–2551 (1999)

    ADS  Google Scholar 

  105. P. Gröning, P. Ruffieux, L. Schlapbach, O. Gröning, Carbon nanotubes for cold electron sources. Adv. Eng. Mater. 5(8), 541–550 (2003)

    Google Scholar 

  106. J. Bonard, T. Stöckli, O. Noury, A. Châtelain, Field emission from cylindrical carbon nanotube cathodes: possibilities for luminescent tubes. Appl. Phys. Lett. 78(18), 2775–2777 (2001)

    ADS  Google Scholar 

  107. J.X. Huang, J. Chen, S.Z. Deng, J.C. She, N.S. Xu, Field-emission fluorescent lamp using carbon nanotubes on a wire-type cold cathode and a reflecting anode. J. Vac. Sci. Technol. B 26(5), 1700–1704 (2008)

    Google Scholar 

  108. Y. Saito, K. Hata, A. Takakura, J. Yotani, S. Uemura, Field emission of carbon nanotubes and its application as electron sources of ultra-high luminance light-source devices. Phys. B Conden. Matter 323(1–4), 30–37 (2002)

    Google Scholar 

  109. M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738), 1215–1219 (2005)

    ADS  Google Scholar 

  110. L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A.N.G. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W.W. Adams, W.E. Billups, M. Pasquali, W.-F. Hwang, R.H. Hauge, J.E. Fischer, R.E. Smalley, Macroscopic, neat, single-walled carbon nanotube fibers. Science 305(5689), 1447–1450 (2004)

    ADS  Google Scholar 

  111. N.S. Lee, D.S. Chung, I.T. Han, J.H. Kang, Y.S. Choi, H.Y. Kim, S.H. Park, Y.W. Jin, W.K. Yi, M.J. Yun, J.E. Jung, C.J. Lee, J.H. You, S.H. Jo, C.G. Lee, J.M. Kim, Application of carbon nanotubes to field emission displays. Diam. Relat. Mater. 10(2), 265–270 (2001)

    Google Scholar 

  112. W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin, Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 75(6), 873–875 (1999)

    ADS  Google Scholar 

  113. Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seelig, R.P.H. Chang, A nanotube-based field-emission flat panel display. Appl. Phys. Lett. 72(22), 2912–2913 (1998)

    ADS  Google Scholar 

  114. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75(20), 3129–3131 (1999)

    ADS  Google Scholar 

  115. Y.C. Choi, K.S. Jeong, I.T. Han, H.J. Kim, Y.W. Jin, J.M. Kim, B.G. Lee, J.H. Park, D.H. Choe, Double-gated field emitter array with carbon nanotubes grown by chemical vapor deposition. Appl. Phys. Lett. 88(26), 263504 (2006)

    ADS  Google Scholar 

  116. P. Liu, L. Liu, Y. Wei, K. Liu, Z. Chen, K. Jiang, Q. Li, S. Fan, Fast high-temperature response of carbon nanotube film and its application as an incandescent display. Adv. Mater. 21(35), 3563–3566 (2009)

    Google Scholar 

  117. Y. Wei, K. Jiang, X. Feng, P. Liu, L. Liu, S. Fan, Comparative studies of multiwalled carbon nanotube sheets before and after shrinking. Phys. Rev. B 76(4), 045423 (2007)

    ADS  Google Scholar 

  118. H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, F. Okuyama, Carbon nanotubes as electron source in an X-ray tubes. Appl. Phys. Lett. 78(17), 2578–2580 (2001)

    Google Scholar 

  119. G.Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J.P. Lu, O. Zhou, Generation of continuous and pulsed diagnostic imaging X-ray radiation using a carbon-nanotube-based field-emission cathodes. Appl. Phys. Lett. 81(2), 355–357 (2002)

    ADS  Google Scholar 

  120. Y.Z. Lee, L. Burk, K. han Wang, G. Cao, J. Lu, O. Zhou, Carbon nanotube based X-ray sources: applications in preclinical and medical imaging. Nucl. Instrum. Meth. A 648, S281–S283 (2011)

    Google Scholar 

  121. S. Wang, X. Calderon, R. Peng, E.C. Schreiber, O. Zhou, S. Chang, A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application. Appl. Phys. Lett. 98(21), 213701 (2011)

    ADS  Google Scholar 

  122. K.B.K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G.A.J. Amaratunga, W.I. Milne, Microwave devices: carbon nanotubes as cold cathodes. Nature 437, 968 (2005)

    Google Scholar 

  123. K.B.K. Teo, S.-B. Lee, M. Chhowalla, V. Semet, V.T. Binh, O. Groening, M. Castignolles, A. Loiseau, G. Pirio, P. Legagneux, D. Pribat, D.G. Hasko, H. Ahmed, G.A.J. Amaratunga, W.I. Milne, Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres: how uniform do they grow? Nanotechnology 14(2), 204–211 (2003)

    ADS  Google Scholar 

  124. W.I. Milne, K.B.K. Teo, E. Minoux, O. Groening, L. Gangloff, L. Hudanski, J.-P. Schnell, D. Dieumegard, F. Peauger, I.Y.Y. Bu, M.S. Bell, P. Legagneux, G. Hasko, G.A.J. Amaratunga, Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. J. Vac. Sci. Technol. B 24(1), 345–348 (2006)

    Google Scholar 

  125. E. Minoux, L. Hudanski, K.B.K. Teo, O. Groening, F. Peauger, D. Dieumegard, J.-P. Schnell, L. Gangloff, G.A.J. Amaratunga, W.I. Milne, J. Robertson, P. Legagneux, Carbon nanotube cathodes as electron sources for microwave amplifiers. in 7th IEEE Conference on Nanotechnology, 2007. IEEE-NANO 2007, pp. 1248–1251 (2007)

    Google Scholar 

  126. P. Legagneux, N. Le Sech, P. Guiset, L. Gangloff, C. Cojocaru, J.P. Schnell, D. Pribat, K.B.K. Teo, J. Robertson, W.I. Milne, F. Andre, Y. Rozier, D. Dieumegard, Carbon nanotube based cathodes for microwave amplifiers. in Vacuum Electronics Conference, 2009. IVEC ’09. IEEE International, pp. 80–81 (2009)

    Google Scholar 

  127. K. Han, Y. Lee, D. Jun, S. Lee, K.W. Jung, S.S. Yang, Field emission ion source using a carbon nanotube array for micro time-of-flight mass spectrometer. Jpn. J. Appl. Phys. 50(6), 06GM04 (2011)

    Google Scholar 

  128. T. Hasobe, S. Fukuzumi, P.V. Kamat, Stacked-cup carbon nanotubes for photoelectrochemical solar cells. Angew. Chem. Int. Edit. 45(5), 755–759 (2006)

    Google Scholar 

  129. K. Kempa, B. Kimball, J. Rybczynski, Z.P. Huang, P.F. Wu, D. Steeves, M. Sennett, M. Giersig, D.V.G.L.N. Rao, D.L. Carnahan, D.Z. Wang, J.Y. Lao, W.Z. Li, Z.F. Ren, Photonic crystals based on periodic arrays of aligned carbon nanotubes. Nano Lett. 3(1), 13–18 (2003)

    Google Scholar 

  130. X. Wang, K. Kempa, Z.F. Ren, B. Kimball, Rapid photon flux switching in two-dimensional photonic crystals. Appl. Phys. Lett. 84(11), 1817–1819 (2004)

    ADS  Google Scholar 

  131. K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. Ren, Carbon nanotubes as optical antennae. Adv. Mater. 19(3), 421–426 (2007)

    Google Scholar 

  132. X. Wang, Z. Ren, K. Kempa, Unrestricted superlensing in a triangular two dimensional photonic crystal. Opt. Express 12(13), 2919–2924 (2004)

    ADS  Google Scholar 

  133. X. Wang, Z.F. Ren, K. Kempa, Improved superlensing in two-dimensional photonic crystals with a basis. Appl. Phys. Lett. 86(6), 061105 (2005)

    ADS  Google Scholar 

  134. Y. Wang, X. Wang, J. Rybczynski, D.Z. Wang, K. Kempa, Z.F. Ren, Triangular lattice of carbon nanotube arrays for negative index of refraction and subwavelength lensing effect. Appl. Phys. Lett. 86(15), 153120 (2005)

    Google Scholar 

  135. Y. Wang, J. Rybczynski, D.Z. Wang, Z.F. Ren, Large-scale triangular lattice arrays of sub-micron islands by microsphere self-assembly. Nanotechnology 16(6), 819–822 (2005)

    ADS  Google Scholar 

  136. Y. Wang, K. Kempa, B. Kimball, J.B. Carlson, G. Benham, W.Z. Li, T. Kempa, J. Rybczynski, A. Herczynski, Z.F. Ren, Receiving and transmitting light-like radio waves: antenna effect in arrays of aligned carbon nanotubes. Appl. Phys. Lett. 85(13), 2607–2609 (2004)

    ADS  Google Scholar 

  137. J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M.J. Naughton, Z.F. Ren, Z.P. Huang, D. Cai, M. Giersig, Subwavelength waveguide for visible light. Appl. Phys. Lett. 90(2), 021104 (2007)

    ADS  Google Scholar 

  138. Y. Zhang, S. Iijima, Elastic response of carbon nanotube bundles to visible light. Phys. Rev. Lett. 82(17), 3472–3475 (1999)

    ADS  Google Scholar 

  139. Z. Li, V.P. Kunets, V. Saini, Y. Xu, E. Dervishi, G.J. Salamo, A.R. Biris, A.S. Biris, Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions. ACS Nano 3(6), 1407–1414 (2009)

    Google Scholar 

  140. S. Barazzouk, S. Hotchandani, K. Vinodgopal, P.V. Kamat, Single-wall carbon nanotube films for photocurrent generation: a prompt response to visible-light irradiation. J. Phys. Chem. B 108(44), 17015–17018 (2004)

    Google Scholar 

  141. Y. Shi, D. Fu, D.H. Marsh, G.A. Rance, A.N. Khlobystov, L.-J. Li, Photoresponse in self-assembled films of carbon nanotubes. J. Phys. Chem. C 112(33), 13004–13009 (2008)

    Google Scholar 

  142. M.A. Bissett, J.G. Shapter, Photocurrent response from vertically aligned single-walled carbon nanotube arrays. J. Phys. Chem. C 114(14), 6778–6783 (2010)

    Google Scholar 

  143. M.A. Bissett, J.G. Shapter, Electrochemistry and photocurrent response from vertically-aligned chemically-functionalized single-walled carbon nanotube arrays. J. Electrochem. Soc. 158(3), K53–K57 (2011)

    Google Scholar 

  144. M.A. Bissett, I. Koper, J.S. Quinton, J.G. Shapter, Dendron growth from vertically aligned single-walled carbon nanotube thin layer arrays for photovoltaic devices. Phys. Chem. Chem. Phys. 13(13), 6059–6064 (2011)

    Google Scholar 

  145. T. Paudel, J. Rybczynski, Y.T. Gao, Y.C. Lan, Y. Peng, K. Kempa, M.J. Naughton, Z.F. Ren, Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays. Phys. Stat. Sol. (a) 208(4), 924–927 (2011)

    ADS  Google Scholar 

  146. M.J. Naughton, K. Kempa, Z.F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J.R. Naughton, G. McMahon, T. Paudel, Y.C. Lan, M.J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, C. Eminian, Efficient nanocoax-based solar cells. Phys. Stat. Sol. (Rapid Res. Lett.) 4(7), 181–183 (2010)

    Google Scholar 

  147. M. Tang, S.-T. Chang, T.-C. Chen, Z. Pei, W.-C. Wang, J. Huang, Simulation of nanorod structures for an amorphous silicon-based solar cell. Thin Solid Films 518(6, Suppl. 1), S259–S261 (2010)

    Google Scholar 

  148. R. Camacho, A. Morgan, M. Flores, T. McLeod, V. Kumsomboone, B. Mordecai, R. Bhattacharjea, W. Tong, B. Wagner, J. Flicker, S. Turano, W. Ready, Carbon nanotube arrays for photovoltaic applications. JOM-J MET 59(3), 39–42 (2007)

    Google Scholar 

  149. H. Zhou, A. Colli, A. Ahnood, Y. Yang, N. Rupesinghe, T. Butler, I. Haneef, P. Hiralal, A. Nathan, G.A.J. Amaratunga, Arrays of parallel connected coaxial multiwall-carbon-nanotube: amorphous-silicon solar cells. Adv. Mater. 21(38–39), 3919–3923 (2009)

    Google Scholar 

  150. Y. Lin, F. Lu, J. Wang, Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis 16(1–2), 145–149 (2004)

    Google Scholar 

  151. J. Wang, G. Liu, M.R. Jan, Ultrasensitive electrical biosensing of proteins and dna: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126(10), 3010–3011 (2004)

    Google Scholar 

  152. J.J. Gooding, R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons, F.J. Mearns, J.G. Shapter, D.B. Hibbert, Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125(30), 9006–9007 (2003)

    Google Scholar 

  153. J.M. Nugent, K.S.V. Santhanam, A. Rubio, P.M. Ajayan, Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. 1(2), 87–91 (2001)

    ADS  Google Scholar 

  154. X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J.F. Rusling, Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem. Commun. 5(5), 408–411 (2003)

    Google Scholar 

  155. R. Feeney, S.P. Kounaves, Microfabricated ultramicroelectrode arrays: developments, advances, and applications in environmental analysis. Electroanalysis 12(9), 677–684 (2000)

    Google Scholar 

  156. Y. Tu, Y. Lin, Z.F. Ren, Nanoelectrode arrays based on low site density aligned carbon nanotubes. Nano Lett. 3(1), 107–109 (2003)

    ADS  Google Scholar 

  157. S.G. Weber, Signal-to-noise ratio in microelectrode-array-based electrochemical detectors. Anal. Chem. 61(4), 295–302 (1989)

    Google Scholar 

  158. V.P. Menon, C.R. Martin, Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem. 67(13), 1920–1928 (1995)

    Google Scholar 

  159. M.A. Guillorn, T.E. McKnight, A. Melechko, V.I. Merkulov, P.F. Britt, D.W. Austin, D.H. Lowndes, M.L. Simpson, Individually addressable vertically aligned carbon nanofiber-based electrochemical probes. J. Appl. Phys. 91(6), 3824–3828 (2002)

    ADS  Google Scholar 

  160. J. Li, A. Cassell, L. Delzeit, J. Han, M. Meyyappan, Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles. J. Phys. Chem. B 106(36), 9299–9305 (2002)

    Google Scholar 

  161. W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, Q. Xin, Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 40(5), 791–794 (2002)

    Google Scholar 

  162. J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 40(8), 1193–1197 (2002)

    Google Scholar 

  163. X.Q. Chen, T. Saito, H. Yamada, K. Matsushige, Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl. Phys. Lett. 78(23), 3714–3716 (2001)

    ADS  Google Scholar 

  164. J.H. Chen, Z.P. Huang, D.Z. Wang, S.X. Yang, W.Z. Li, J.G. Wen, Z.F. Ren, Electrochemical synthesis of polypyrrole films over each of well-aligned carbon nanotubes. Synth. Met. 125(3), 289–294 (2002)

    Google Scholar 

  165. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3, 929–933 (July 2003)

    ADS  Google Scholar 

  166. Y. Tu, Y. Lin, W. Yantasee, Z. Ren, Carbon nanotubes based nanoelectrode arrays: fabrication, evaluation, and application in voltammetric analysis. Electroanalysis 17(1), 79–84 (2005)

    Google Scholar 

  167. J. Li, J.E. Koehne, A.M. Cassell, H. Chen, H.T. Ng, Q. Ye, W. Fan, J. Han, M. Meyyappan, Inlaid multi-walled carbon nanotube nanoelectrode arrays for electroanalysis. Electroanalysis 17(1), 15–27 (2005)

    Google Scholar 

  168. A. Misra, J. Giri, C. Daraio, Hydrogen evolution on hydrophobic aligned carbon nanotube arrays. ACS Nano 3, 3903–3908 (2009)

    Google Scholar 

  169. C.V. Nguyen, L. Delzeit, A.M. Cassell, J. Li, J. Han, M. Meyyappan, Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett. 2(10), 1079–1081 (2002)

    Google Scholar 

  170. J. Koehne, J. Li, A.M. Cassell, H. Chen, Q. Ye, H.T. Ng, J. Han, M. Meyyappan, The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays. J. Mater. Chem. 14(4), 676–684 (2004)

    Google Scholar 

  171. J.K. Campbell, L. Sun, R.M. Crooks, Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 121(15), 3779–3780 (1999)

    Google Scholar 

  172. P. Britto, K. Santhanam, P. Ajayan, Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg. 41(1), 121–125 (1996)

    Google Scholar 

  173. J.J. Davis, R.J. Coles, H. Allen, O. Hill, Protein electrochemistry at carbon nanotube electrodes. J. Electroanal. Chem. 440(1–2), 279–282 (1997)

    Google Scholar 

  174. P. Ugo, L.M. Moretto, F. Vezzà, Ionomer-coated electrodes and nanoelectrode ensembles as electrochemical environmental sensors: recent advances and prospects. Chem. Phys. Chem. 3(11), 917–925 (2002)

    Google Scholar 

  175. W.E. Morf, N.F. de Rooij, Performance of amperometric sensors based on multiple microelectrode arrays. Sens. Actuat. B Chem. 44(1–3), 538–541 (1997)

    Google Scholar 

  176. W.L. Caudill, J.O. Howell, R.M. Wightman, Flow rate independent amperometric cell. Anal. Chem. 54(14), 2532–2535 (1982)

    Google Scholar 

  177. Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4(2), 191–195 (2004)

    ADS  Google Scholar 

  178. J. Li, H.T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, M. Meyyappan, Carbon nanotube nanoelectrode array for ultrasensitive dna detection. Nano Lett. 3, 597–602 (May 2003)

    ADS  Google Scholar 

  179. S. Fletcher, M.D. Horne, Random assemblies of microelectrodes (RAM (TM) electrodes) for electrochemical studies. Electrochem. Commun. 1(10), 502–512 (1999)

    Google Scholar 

  180. M.E. Sandison, N. Anicet, A. Glidle, J.M. Cooper, Optimization of the geometry and porosity of microelectrode arrays for sensor design. Anal. Chem. 74(22), 5717–5725 (2002)

    Google Scholar 

  181. H.J. Lee, C. Beriet, R. Ferrigno, H.H. Girault, Cyclic voltammetry at a regular microdisc electrode array. J. Electroanal. Chem. 502(1–2), 138–145 (2001)

    Google Scholar 

  182. F. Faßbender, G. Schmitt, M. J. Schöning, H. Lüth, G. Buß, J.W. Schultze, Optimization of passivation layers for corrosion protection of silicon-based microelectrode arrays. Sens. Actuat. B Chem. 68(1–3), 128–133 (2000)

    Google Scholar 

  183. J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta 50(15), 3049–3060 (2005)

    Google Scholar 

  184. G. Liu, Y. Lin, Y. Tu, Z. Ren, Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array. Analyst 130(7), 1098–1101 (2005)

    ADS  Google Scholar 

  185. X. Guo, Y. Yun, V.N. Shanov, H.B. Halsall, W.R. Heineman, Determination of trace metals by anodic stripping voltammetry using a carbon nanotube tower electrode. Electroanalysis 23(5), 1252–1259 (2011)

    Google Scholar 

  186. D. Kauffman, A. Star, Carbon nanotube gas and vapor sensors. Angew. Chem. Int. Edit. 47(35), 6550–6570 (2008)

    Google Scholar 

  187. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris, Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73(17), 2447–2449 (1998)

    Google Scholar 

  188. E.S. Snow, J.P. Novak, P.M. Campbell, D. Park, Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 82(13), 2145–2147 (2003)

    ADS  Google Scholar 

  189. H.E. Katz, Chemically sensitive field-effect transistors and chemiresistors: new materials and device structures. Electroanalysis 16(22), 1837–1842 (2004)

    Google Scholar 

  190. E.S. Snow, F.K. Perkins, J.A. Robinson, Chemical vapor detection using single-walled carbon nanotubes. Chem. Soc. Rev. 35(9), 790–798 (2006)

    Google Scholar 

  191. J.T.W. Yeow, Cabron nanotube gas sensors. in Carbon Nanotube Devices: Properties, Modeling, Integration and Applications. Advanced Micro and Nanosystems, vol. 8, ed. by C. Hierold (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  192. T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19(33), 332001 (2008)

    Google Scholar 

  193. P. Bondavalli, P. Legagneux, D. Pribat, Carbon nanotubes based transistors as gas sensors: state of the art and critical review. Sens. Actuat. B Chem. 140(1), 304–318 (2009)

    Google Scholar 

  194. Y. Wang, J.T.W. Yeow, A review of carbon nanotubes-based gas sensors. J. Sens. 2009, 493904 (2009)

    Google Scholar 

  195. M. Lee, K.Y. Baik, M. Noah, Y.K. Kwon, J.O. Lee, S. Hong, Nanowire and nanotube transistors for lab-on-a-chip applications. Lab Chip 9(16), 2267–2280 (2009)

    Google Scholar 

  196. C. Cantalini, L. Valentini, I. Armentano, J.M. Kenny, L. Lozzi, S. Santucci, Carbon nanotubes as new materials for gas sensing applications. J. Eur. Ceram. Soc. 24(6), 1405–1408 (2004)

    Google Scholar 

  197. A. Modi, N. Koratkar, E. Lass, B. Wei, P.M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171–174 (2003)

    Google Scholar 

  198. S. Dag, Y. Ozturk, S. Ciraci, T. Yildirim, Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes. Phys. Rev. B 72(15), 155404 (2005)

    ADS  Google Scholar 

  199. J. Kong, M.G. Chapline, H. Dai, Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater. 13(18), 1384–1386 (2001)

    Google Scholar 

  200. I. Sayago, E. Terrado, E. Lafuente, M. Horrillo, W. Maser, A. Benito, R. Navarro, E. Urriolabeitia, M. Martinez, J. Gutierrez, Hydrogen sensors based on carbon nanotubes thin films. Synth. Met. 148(1), 15–19 (2005)

    Google Scholar 

  201. A.T. Gee, B.E. Hayden, C. Mormiche, T.S. Nunney, The role of steps in the dynamics of hydrogen dissociation on Pt(533). J. Chem. Phys. 112(17), 7660–7668 (2000)

    ADS  Google Scholar 

  202. R.A. Olsen, Ş.C. Bădescu, S.C. Ying, E.J. Baerends, Adsorption and diffusion on a stepped surface: atomic hydrogen on Pt(211). J. Chem. Phys. 120(24), 11852–11863 (2004)

    Google Scholar 

  203. Y.M. Wong, W.P. Kang, J.L. Davidson, A. Wisitsora-at, K.L. Soh, A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sens. Actuat. B Chem. 93(1–3), 327–332 (2003)

    Google Scholar 

  204. J. Zhao, A. Buldum, J. Han, J.P. Lu, Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13(2), 195 (2002)

    ADS  Google Scholar 

  205. T. Ueda, S. Katsuki, K. Takahashi, H. Narges, T. Ikegami, F. Mitsugi, Fabrication and characterization of carbon nanotube based high sensitive gas sensors operable at room temperature. Diam. Relat. Mater. 17(7–10), 1586–1589 (2008)

    Google Scholar 

  206. M. Penza, R. Rossi, M. Alvisi, E. Serra, Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Nanotechnology 21(10), 105501 (2010)

    ADS  Google Scholar 

  207. L. Valentini, C. Cantalini, I. Armentano, J.M. Kenny, L. Lozzi, S. Santucci, Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection. Diamond Relat. Mater. 13(4–8), 1301–1305 (2004)

    ADS  Google Scholar 

  208. S. Kim, CNT sensors for detecting gases with low adsorption energy by ionization. Sensors 6(5), 503–513 (2006)

    Google Scholar 

  209. S.J. Kim, Gas sensors based on paschen’s law using carbon nanotubes as electron emitters. J. Phys. D Appl. Phys. 39(14), 3026 (2006)

    Google Scholar 

  210. M. Arab, F. Berger, F. Picaud, C. Ramseyer, J. Glory, M. Mayne-L’Hermite, Direct growth of the multi-walled carbon nanotubes as a tool to detect ammonia at room temperature. Chem. Phys. Lett. 433(1–3), 175–181 (2006)

    Google Scholar 

  211. C. Wei, L. Dai, A. Roy, T.B. Tolle, Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites. J. Am. Chem. Soc. 128(5), 1412–1413 (2006)

    Google Scholar 

  212. R.J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123(16), 3838–3839 (2001)

    Google Scholar 

  213. B.R. Azamian, J.J. Davis, K.S. Coleman, C.B. Bagshaw, M.L.H. Green, Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc. 124(43), 12664–12665 (2002)

    Google Scholar 

  214. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)

    ADS  Google Scholar 

  215. J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 125(9), 2408–2409 (2003)

    Google Scholar 

  216. H. Luo, Z. Shi, N. Li, Z. Gu, Q. Zhuang, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem. 73(5), 915–920 (2001)

    Google Scholar 

  217. G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393(6683), 346–349 (1998)

    ADS  Google Scholar 

  218. Y. Yu, A. Cimeno, Y. Lan, J. Rybczynski, D. Wang, T. Paudel, Z. Ren, D. Wagner, M. Qiu, T. Chiles, D. Cai, Assembly of multi-functional nanocomponents on periodic nanotube array for biosensors. Micro Nano Lett. 4, 27–33 (Mar. 2009)

    Google Scholar 

  219. M. Gao, L. Dai, G.G. Wallace, Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers. Electroanalysis 15(13), 1089–1094 (2003)

    Google Scholar 

  220. M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low-potential stable nadh detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun. 4(10), 743–746 (2002)

    Google Scholar 

  221. D.R. Kauffman, A. Star, Electronically monitoring biological interactions with carbon nanotube field-effect transistors. Chem. Soc. Rev. 37(6), 1197–1206 (2008)

    Google Scholar 

  222. S.N. Kim, J.F. Rusling, F. Papadimitrakopoulos, Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater. 19, 3214–3228 (2007)

    Google Scholar 

  223. G. Sánchez-Pomales, L. Santiago-Rodríguez, C.R. Cabrera, DNA-functionalized carbon nanotubes for biosensing applications. J. Nanosci. Nanotechnol. 9(4), 2175–2188 (2009)

    Google Scholar 

  224. P. He, Y. Xu, Y. Fang, Applications of carbon nanotubes in electrochemical DNA biosensors. Microchim. Acta 152, 175–186 (2006)

    Google Scholar 

  225. Y. Lin, S. Taylor, H.P. Li, K.A.S. Fernando, L.W. Qu, W. Wang, L.R. Gu, B. Zhou, Y.P. Sun, Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 14(4), 527–541 (2004)

    Google Scholar 

  226. J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1), 7–14 (2005)

    Google Scholar 

  227. M. Sinha, J. Ma, J.T.W. Yeow, Carbon nanotube-based sensors. J. Nanosci. Nanotechnol. 6(3), 573–590 (2006)

    Google Scholar 

  228. K. Balasubramanian, M. Burghard, Biosensors based on carbon nanotubes. Anal. Bioanal. Chem. 385(3), 452–468 (2006)

    Google Scholar 

  229. M.U. Ahmed, M.M. Hossain, E. Tamiya, Electrochemical biosensors for medical and food applications. Electroanalysis 20(6), 616–626 (2008)

    Google Scholar 

  230. J. Koh, B. Kim, S. Hong, H. Lim, H.C. Choi, Nanotube-based chemical and biomolecular sensors. J. Mater. Sci. Technol. 24(4), 578–588 (2008)

    Google Scholar 

  231. K. Maehashi, K. Matsumoto, Label-free electrical detection using carbon nanotube-based biosensors. Sensors 9(7), 5368–5378 (2009)

    Google Scholar 

  232. C.B. Jacobs, M.J. Peairs, B.J. Venton, Review: carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 662(2), 105–127 (2010)

    Google Scholar 

  233. D. Fam, A. Palaniappan, A. Tok, B. Liedberg, S. Moochhala, A review on technological aspects influencing commercialization of carbon nanotube sensors. Sens. Actuat. B Chem. 157(1), 1–7 (2011)

    Google Scholar 

  234. J. Wang, J. Liu, L. Chen, F. Lu, Highly selective membrane-free, mediator-free glucose biosensor. Anal. Chem. 66(21), 3600–3603 (1994)

    Google Scholar 

  235. J. Wang, F. Lu, L. Angnes, J. Liu, H. Sakslund, Q. Chen, M. Pedrero, L. Chen, O. Hammerich, Remarkably selective metallized-carbon amperometric biosensors. Anal. Chim. Acta 305(1–3), 3–7 (1995)

    Google Scholar 

  236. F. Jiang, S. Wang, J. Lin, H. Jin, L. Zhang, S. Huang, J. Wang, Aligned SWCNT-copper oxide array as a nonenzymatic electrochemical probe of glucose. Electrochem. Commun. 13(4), 363–365 (2011)

    Google Scholar 

  237. Q. Yang, Y. Qu, Y. Bo, Y. Wen, S. Huang, Biosensor for atrazin based on aligned carbon nanotubes modified with glucose oxidase. Microchim. Acta 168(3), 197–203 (2010)

    Google Scholar 

  238. Y. Li, T. Kaneko, Y. Hirotsu, R. Hatakeyama, Light-induced electron transfer through DNA-decorated single-walled carbon nanotubes. Small 6(1), 27–30 (2010)

    Google Scholar 

  239. F. Patolsky, C.M. Lieber, Nanowire nanosensors. Mater. Today 8(4), 20–28 (2005)

    Google Scholar 

  240. D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M.F. Roberts, J.H. Chuang, M.J. Naughton, Z. Ren, T.C. Chiles, A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nat. Nanotechnol. 5, 597–601 (2010)

    Google Scholar 

  241. R.S. Prasher, Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials. J. Heat Transf. 123(5), 969–975 (2001)

    Google Scholar 

  242. P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (Oct 2001)

    ADS  Google Scholar 

  243. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79(14), 2252–2254 (2001)

    Google Scholar 

  244. M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)

    ADS  Google Scholar 

  245. C.H. Liu, H. Huang, Y. Wu, S.S. Fan, Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Appl. Phys. Lett. 84(21), 4248–4250 (2004)

    ADS  Google Scholar 

  246. C.-W. Nan, G. Liu, Y. Lin, M. Li, Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85(16), 3549–3551 (2004)

    ADS  Google Scholar 

  247. O. Breuer, U. Sundararaj, Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym. Compos. 25, 630–645 (2004)

    Google Scholar 

  248. J. Liu, B. Michel, M. Rencz, C. Tantolin, C. Sarno, R. Miessners, K.V. Schuetts, X.H. Tang, S. Demoustier, A. Ziaei, Recent progress of thermal interface material research—an overview, in 14th International Workshop on Thermal Investigation Of ICs And Systems, pp. 156–162 (2008)

    Google Scholar 

  249. S.T. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, P. Keblinski, Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2, 731–734 (Nov. 2003)

    ADS  Google Scholar 

  250. H. Huang, C.H. Liu, Y. Wu, S. Fan, Aligned carbon nanotube composite films for thermal management. Adv. Mater. 17(13), 1652–1656 (2005)

    Google Scholar 

  251. X.J. Hu, A.A. Padilla, J. Xu, T.S. Fisher, K.E. Goodson, 3-omega measurements of vertically oriented carbon nanotubes on silicon. J. Heat Transf. 128(11), 1109–1113 (2006)

    Google Scholar 

  252. K. Zhang, M.M.F. Yuen, N. Wang, J.Y. Miao, D.G.W. Xiao, H.B. Fan, Thermal interface material with aligned CNT and its application in HB-LED packaging, in Electronic Components and Technology Conference, 2006. Proceedings. 56th, p. 177 (2006)

    Google Scholar 

  253. J.L. Abot, V. Raghavan, G. Li, E.L. Thomas, Effect of interface, height and density of long vertically aligned carbon nanotube arrays on their thermal conductivity: an experimental study. J. Nanosci. Nanotechnol. 11(1), 115–124 (2011)

    Google Scholar 

  254. B.K. Kaushik, S. Goel, G. Rauthan, Future VLSI interconnects: optical fiber or carbon nanotube—a review. Microelectron. Int. 24(2), 53–63 (2007)

    Google Scholar 

  255. W. Steinhögl, G. Schindler, G. Steinlesberger, M. Engelhardt, Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 66, 075414, (2002)

    Google Scholar 

  256. S. Im, N. Srivastava, K. Banerjee, K. Goodson, Scaling analysis of multilevel interconnect temperatures for high-performance ICs. IEEE Trans. Electron Dev. 52(12), 2710–2719 (2005)

    ADS  Google Scholar 

  257. Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowndes, Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Appl. Phys. Lett. 78(10), 1394–1396 (2001)

    ADS  Google Scholar 

  258. M. Radosavljević, J. Lefebvre, A.T. Johnson, High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes. Phys. Rev. B 64, 241307 (Dec 2001)

    ADS  Google Scholar 

  259. P.G. Collins, M.S. Arnold, P. Avouris, Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517), 706–709 (2001)

    ADS  Google Scholar 

  260. C.T. White, T.N. Todorov, Carbon nanotubes as long ballistic conductors. Nature 393, 240–242 (1998)

    ADS  Google Scholar 

  261. Z. Yao, C.L. Kane, C. Dekker, High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000)

    ADS  Google Scholar 

  262. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59(4), R2514–R2516 (1999)

    ADS  Google Scholar 

  263. J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H. Dai, R.B. Laughlin, L. Liu, C.S. Jayanthi, S.Y. Wu, Quantum interference and ballistic transmission in nanotube electron waveguides. Phys. Rev. Lett. 87, 106801 (Aug 2001)

    ADS  Google Scholar 

  264. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96–100 (2006)

    ADS  Google Scholar 

  265. A. Naeemi, J.D. Meindl, Carbon nanotube interconnects. Annu. Rev. Mater. Res. 39(1), 255–275 (2009)

    ADS  Google Scholar 

  266. N. Srivastava, R.V. Joshi, K. Banerjee, Carbon nanotube interconnects: implications for performance, power dissipation and thermal management, in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, pp. 249–252 (2005)

    Google Scholar 

  267. X. Zhang, T. Wang, J. Liu, C. Andersson, Overview of carbon nanotubes as off-chip interconnects, in Electronics System-Integration Technology Conference, 2008. ESTC 2008, 2nd, Greenwich, UK, pp. 633–638 (2008)

    Google Scholar 

  268. J. Li, Q. Ye, A. Cassell, H.T. Ng, R. Stevens, J. Han, M. Meyyappan, Bottom-up approach for carbon nanotube interconnects. Appl. Phys. Lett. 82(15), 2491–2493 (2003)

    Google Scholar 

  269. F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhögl, M. Liebau, E. Unger, W. Hönlein, Carbon nanotubes in interconnect applications. Microelectron. Eng. 64(1–4), 399–408 (2002)

    Google Scholar 

  270. M. Nihei, A. Kawabata, Y. Awano, Direct diameter-controlled growth of multiwall carbon nanotubes on nickel-silicide layer. Jpn. J. Appl. Phys. 42(Part 2, 6B), L721–L723 (2003)

    Google Scholar 

  271. Y.-M. Choi, S. Lee, H.S. Yoon, M.-S. Lee, H. Kim, I. Han, Y. Son, I.-S. Yeo, U.-I. Chung, J.-T. Moon, Integration and electrical properties of carbon nanotube array for interconnect applications, in Nanotechnology, 2006. IEEE-NANO 2006. Sixth IEEE Conference, vol. 1, pp. 262–265 (2006)

    Google Scholar 

  272. Y. Chai, M. Sun, Z. Xiao, Y. Li, M. Zhang, P. Chan, Pursuit of future interconnect technology with aligned carbon nanotube arrays [nanopackaging]. IEEE Nanotechnol. Mag. 5(1), 22–26 (2011)

    Google Scholar 

  273. F. Kreupl, Carbon nanotubes in microelectronic applications. Adv. Micro Nanosyst. 8, 1–41 (2008)

    Google Scholar 

  274. S. Huang, X. Cai, J. Liu, Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 125(19), 5636–5637 (2003)

    Google Scholar 

  275. H. Xin, A.T. Woolley, Directional orientation of carbon nanotubes on surfaces using a gas flow cell. Nano Lett. 4(8), 1481–1484 (2004)

    ADS  Google Scholar 

  276. Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 (2001)

    ADS  Google Scholar 

  277. A. Ural, Y. Li, H. Dai, Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl. Phys. Lett. 81(18), 3464–3466 (2002)

    ADS  Google Scholar 

  278. E. Joselevich, C.M. Lieber, Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett. 2(10), 1137–1141 (2002)

    ADS  Google Scholar 

  279. A. Nojeh, A. Ural, R.F. Pease, H. Dai, Electric-field-directed growth of carbon nanotubes in two dimensions. J. Vac. Sci. Technol. B 22(6), 3421–3425 (2004)

    Google Scholar 

  280. Y. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. Wang, E. Yenilmez, Q. Wang, J.F. Gibbons, Y. Nishi, H. Dai, Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 4(2), 317–321 (2004)

    Google Scholar 

  281. Y.H. Yan, S. Li, L.Q. Chen, M.B. Chan-Park, Q. Zhang, Large-scale submicron horizontally aligned single-walled carbon nanotube surface arrays on various substrates produced by a fluidic assembly method. Nanotechnology 17(22), 5696 (2006)

    Google Scholar 

  282. B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P.M. Ajayan, Microfabrication technology: organized assembly of carbon nanotubes. Nature 416(6880), 495–496 (2002)

    ADS  Google Scholar 

  283. Y. Awano, S. Sato, D. Kondo, M. Ohfuti, A. Kawabata, M. Nihei, N. Yokoyama, Carbon nanotube via interconnect technologies: size-classified catalyst nanoparticles and low-resistance ohmic contact formation. Phys. Stat. Sol. (a) 203(14), 3611–3616 (2006)

    Google Scholar 

  284. M. Nihei, D. Kondo, A. Kawabata, S. Sato, H. Shioya, M. Sakaue, T. Iwai, M. Ohfuti, Y. Awano, Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells [IC interconnect applications], in Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International, pp. 234–236 (2005)

    Google Scholar 

  285. N. Chiodarelli, K. Kellens, D.J. Cott, N. Peys, K. Arstila, M. Heyns, S.D. Gendt, G. Groeseneken, P.M. Vereecken, Integration of vertical carbon nanotube bundles for interconnects. J. Electrochem. Soc. 157(10), K211–K217 (2010)

    Google Scholar 

  286. Z. Liu, N. Bajwa, L. Ci, S.H. Lee, S. Kar, P.M. Ajayan, J.-Q. Lu, Densification of carbon nanotube bundles for interconnect application, in International Interconnect Technology Conference, IEEE 2007, pp. 201–203 (2007)

    Google Scholar 

  287. P.L. McEuen, M. Bockrath, D.H. Cobden, Y.-G. Yoon, S. G. Louie, Disorder, pseudospins, and backscattering in carbon nanotubes. Phys. Rev. Lett. 83(24), 5098–5101 (1999)

    Google Scholar 

  288. W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park, Fabry–Perot interference in a nanotube electron waveguide. Nature 411(6838), 665–669 (2001)

    Google Scholar 

  289. T. Hunger, B. Lengeler, J. Appenzeller, Transport in ropes of carbon nanotubes: contact barriers and luttinger liquid theory. Phys. Rev. B 69(19), 195406 (2004)

    ADS  Google Scholar 

  290. T. Wang, K. Jeppson, N. Olofsson, E.E.B. Campbell, J. Liu, Through silicon vias filled with planarized carbon nanotube bundles. Nanotechnology 20(48), 485203 (2009)

    Google Scholar 

  291. M. Nihei, M. Horibe, A. Kawabata, Y. Awano, Carbon nanotube vias for future LSI interconnects. IEEE 2004, 251–253 (2004)

    Google Scholar 

  292. J.Y. Hwang, A.R.P. Singh, M. Chaudhari, J. Tiley, Y. Zhu, J. Du, R. Banerjee, Templated growth of hexagonal nickel carbide nanocrystals on vertically aligned carbon nanotubes. J. Phys. Chem. C 114(23), 10424–10429 (2010)

    Google Scholar 

  293. W. Han, S. Fan, Q. Li, Y. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277(5330), 1287–1289 (1997)

    Google Scholar 

  294. T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res. 13(9), 2445–2449 (1998)

    ADS  Google Scholar 

  295. J.W. An, D.H. You, D.S. Lim, Tribological properties of hot-pressed alumina-CNT composites. Wear 255(1–6), 677–681 (2003)

    Google Scholar 

  296. L. Chen, B.-L. Zhang, M.-Z. Qu, Z.-L. Yu, Preparation and characterization of CNTS-\(\text{ TiO}_2\) composites. Powder Technol. 154(1), 70–72 (2005)

    Google Scholar 

  297. F.L. Garcia, C. Estournès, A. Peigney, A. Weibel, E. Flahaut, C. Laurent, Spark-plasma-sintering of double-walled carbon nanotube-magnesia nanocomposites. Scr. Mater. 60(9), 741–744 (2009)

    Google Scholar 

  298. E. Flahaut, A. Peigney, C. Laurent, C. Marlière, F. Chastel, A. Rousset, Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater. 48(14), 3803–3812 (2000)

    Google Scholar 

  299. C. Laurent, A. Peigney, O. Dumortier, A. Rousset, Carbon nanotubes-Fe-alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-pressed composites. J. Eur. Ceram. Soc. 18(14), 2005–2013 (1998)

    Google Scholar 

  300. A. Peigney, E. Flahaut, C. Laurent, F. Chastel, A. Rousset, Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chem. Phys. Lett. 352(1–2), 20–25 (2002)

    Google Scholar 

  301. S. Cha, K. Kim, S. Arshad, C. Mo, S. Hong, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater. 17(11), 1377–1381 (2005)

    Google Scholar 

  302. Y. Guo, H. Cho, D. Shi, J. Lian, Y. Song, J. Abot, B. Poudel, Z. Ren, L. Wang, R.C. Ewing, Effects of plasma surface modification on interfacial behaviors and mechanical properties of carbon nanotube-\(\text{ Al}_2{\rm O}_3\) nanocomposites. Appl. Phys. Lett. 91(26), 261903 (2007)

    Google Scholar 

  303. A. Peigney, Composite materials: tougher ceramics with nanotubes. Nat. Mater. 2, 15–16 (Jan. 2003)

    Google Scholar 

  304. W.A. Curtin, B.W. Sheldon, CNT-reinforced ceramics and metals. Mater. Today 7(11), 44–49 (2004)

    Google Scholar 

  305. K.T. Kim, S.I. Cha, S.H. Hong, Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites. Mat. Sci. Eng. A Struct. 449–451, 46–50 (2007)

    Google Scholar 

  306. H. Cho, D. Shi, Y. Guo, J. Lian, Z. Ren, B. Poudel, Y. Song, J.L. Abot, D. Singh, J. Routbort, L. Wang, R.C. Ewing, Enhanced thermal stability of carbon nanotubes by plasma surface modification in \(\text{ Al}_2 {\rm O}_3\) composites. J. Appl. Phys. 104(7), 074302 (2008)

    Google Scholar 

  307. A. Peigney, C. Laurent, E. Flahaut, A. Rousset, Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram. Int. 26(6), 677–683 (2000)

    Google Scholar 

  308. G.-D. Zhan, J.D. Kuntz, J. Wan, A.K. Mukherjee, Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat. Mater. 2, 38–42 (2003)

    ADS  Google Scholar 

  309. B. Landi, S. Castro, H. Ruf, C. Evans, S. Bailey, R. Raffaelle, CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol. Energy Mater. Sol. Cells 87(1–4), 733–746 (2005)

    Google Scholar 

  310. I. Robel, B. Bunker, P. Kamat, Single-walled carbon nanotube-CDS nanocomposites as light-harvesting assemblies: photoinduced charge-transfer interactions. Adv. Mater. 17(20), 2458–2463 (2005)

    Google Scholar 

  311. P. Santhosh, A. Gopalan, K.-P. Lee, Gold nanoparticles dispersed polyaniline grafted multiwall carbon nanotubes as newer electrocatalysts: preparation and performances for methanol oxidation. J. Catal. 238(1), 177–185 (2006)

    Google Scholar 

  312. I. Robel, G. Girishkumar, B.A. Bunker, P.V. Kamat, K. Vinodgopal, Structural changes and catalytic activity of platinum nanoparticles supported on \({\rm C}_{60}\) and carbon nanotube films during the operation of direct methanol fuel cells. Appl. Phys. Lett. 88(7), 073113 (2006)

    Google Scholar 

  313. T. Yildirim, S. Ciraci, Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys. Rev. Lett. 94(17), 175501 (2005)

    ADS  Google Scholar 

  314. A. Ansón, E. Lafuente, E. Urriolabeitia, R. Navarro, A.M. Benito, W.K. Maser, M.T. Martínez, Hydrogen capacity of palladium-loaded carbon materials. J. Phys. Chem. B 110(13), 6643–6648 (2006)

    Google Scholar 

  315. W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69(10), 1486–1498 (2009)

    Google Scholar 

  316. L. Bokobza, Multiwall carbon nanotube elastomeric composites: a review. Polymer 48(17), 4907–4920 (2007)

    Google Scholar 

  317. J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006)

    Google Scholar 

  318. J.N. Coleman, U. Khan, Y.K. Gun’ko, Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18(6), 689–706 (2006)

    Google Scholar 

  319. A.V. Desai, M.A. Haque, Mechanics of the interface for carbon nanotube-polymer composites. Thin Wall Struct. 43(11), 1787–1803 (2005)

    Google Scholar 

  320. Y. Ear, E. Silverman, Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bull. 32(4), 328–334 (2007)

    Google Scholar 

  321. K.-T. Lau, M. Chipara, H.-Y. Ling, D. Hui, On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Compos. Part B Eng. 35B(2), 95–101 (2004)

    Google Scholar 

  322. K. Lau, C. Gu, D. Hui, A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos. Part B Eng. 37(6), 425–36 (2006)

    Google Scholar 

  323. K.T. Lau, M. Lu, D. Hui, Coiled carbon nanotubes: synthesis and their potential applications in advanced composite structures. Compos. Part B Eng. 37(6), 437–48 (2006)

    Google Scholar 

  324. C. Li, E.T. Thostenson, T.W. Chou, Sensors and actuators based on carbon nanotubes and their composites: a review. Compos. Sci. Technol. 68(6), 1227–1249 (2008)

    Google Scholar 

  325. C. McClory, S.J. Chin, T. McNally, Polymer/carbon nanotube composites. Aust. J. Chem. 62(8), 762–785 (2009)

    Google Scholar 

  326. H. Miyagawa, M. Misra, A.K. Mohanty, Mechanical properties of carbon nanotubes and their polymer nanocomposites. J. Nanosci. Nanotechnol. 5(10), 1593–1615 (2005)

    Google Scholar 

  327. M. Moniruzzaman, K.I. Winey, Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16), 5194–5205 (2006)

    ADS  Google Scholar 

  328. P. Podsiadlo, B.S. Shim, N.A. Kotov, Polymer/clay and polymer/carbon nanotube hybrid organic-inorganic multilayered composites made by sequential layering of nanometer scale films. Coord. Chem. Rev. 253(23–24), 2835–2851 (2009)

    Google Scholar 

  329. M. Singh, P.K. Kathuroju, N. Jampana, Polypyrrole based amperometric glucose biosensors. Sens. Actuat. B Chem. 143(1), 430–443 (2009)

    Google Scholar 

  330. E.T. Thostenson, Z.F. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)

    Google Scholar 

  331. E.V. Barrera, M.L. Shofner, E.L. Corral, Appplications: composites, in Carbon Nanotubes: Science and Applications, ed. by M. Meyyappan (CRC Press, Boca Raton, 2004)

    Google Scholar 

  332. C.A. Dyke, J.M. Tour, Functionalized carbon nanotubes in composites, in Carbon Nanotubes Properties and Applications, ed. by M.J. O’Connell (CRC Press, Boca Raton, 2006)

    Google Scholar 

  333. S. Boncel, K.K. Koziol, K.Z. Walczak, A.H. Windle, M.S. Shaffer, Infiltration of highly aligned carbon nanotube arrays with molten polystyrene. Mater. Lett. 65(14), 2299–2303 (2011)

    Google Scholar 

  334. P. Mahanandia, J.J. Schneider, M. Khaneft, B. Stuhn, T.P. Peixoto, B. Drossel, Polymer confinement effects in aligned carbon nanotubes arrays. Phys. Chem. Chem. Phys. 12(17), 4407–4417 (2010)

    Google Scholar 

  335. C.J. Hu, Y.H. Lin, C.W. Tang, M.Y. Tsai, W.K. Hsu, H.F. Kuo, ZnO-coated carbon nanotubes: flexible piezoelectric generators. Adv. Mater. 23(26), 2941–2945 (2011)

    Google Scholar 

  336. K.K. Koziol, S. Boncel, M.S. Shaffer, A.H. Windle, Aligned carbon nanotube-polystyrene composites prepared by in situ polymerisation of stacked layers. Compos. Sci. Technol. 71(13), 1606–1611 (2011)

    Google Scholar 

  337. J. Sandler, J. Kirk, I. Kinloch, M. Shaffer, A. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–5899 (2003)

    Google Scholar 

  338. E.T. Thostenson, T.W. Chou, Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J. Phys. D Appl Phys 35, 77–80 (2002)

    ADS  Google Scholar 

  339. B.H. Cipriano, A.K. Kota, A.L. Gershon, C.J. Laskowski, T. Kashiwagi, H.A. Bruck, S.R. Raghavan, Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer 49, 4846–4851 (2008)

    Google Scholar 

  340. C.A. Martin, J.K.W. Sandler, A.H. Windle, M.K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer, Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46, 877–886 (2005)

    Google Scholar 

  341. E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, K. Dahmen, Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J. Appl. Phys. 94(9), 6034–6039 (2003)

    ADS  Google Scholar 

  342. R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330(3–4), 219–225 (2000)

    Google Scholar 

  343. P. Pötschke, H. Brünig, A. Janke, D. Fischer, D. Jehnichen, Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning. Polymer 46, 10355–10363 (2005)

    Google Scholar 

  344. E.J. García, A.J. Hart, B.L. Wardle, A.H. Slocum, Fabrication of composite microstructures by capillarity-driven wetting of aligned carbon nanotubes with polymers. Nanotechnology 18, 165602 (2007)

    Google Scholar 

  345. E.J. García, D.S. Saito, L. Megalini, A.J. Hart, R. Guzman de Villoria, B.L. Wardle, Fabrication and multifunctional properties of high volume fraction aligned carbon nanotube thermoset composites. J. Nano Syst. Tech. 1, 1–11 (2009)

    Google Scholar 

  346. S. Sarkar, J. Zou, J. Liu, C. Xu, L. An, L. Zhai, Polymer-derived ceramic composite fibers with aligned pristine multiwalled carbon nanotubes. ACS Appl. Mater. Interfaces 2, 1150–1156 (2010)

    Google Scholar 

  347. S.V. Ahir, Y.Y. Huang, E.M. Terentjev, Polymers with aligned carbon nanotubes: active composite materials. Polymer 49(18), 3841–3854 (2008)

    Google Scholar 

  348. P.M. Ajayan, J.M. Tour, Nanotube composites. Nature 447, 1066–1068 (2007)

    ADS  Google Scholar 

  349. M.H. Al-Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1), 2–22 (2009)

    Google Scholar 

  350. M. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, K.E. Goodson, Thermal properties of metal-coated vertically-aligned single wall nanotube films, in The Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, 2006. ITHERM’ 06, pp. 1306–1313, June 2006

    Google Scholar 

  351. M. Baibarac, P. Gomez-Romero, Nanocomposites based on conducting polymers and carbon nanotubes: from fancy materials to functional applications. J. Nanosci. Nanotechnol. 6(2), 289–302 (2006)

    Google Scholar 

  352. P. Dubois, M. Alexandre, Performant clay/carbon nanotube polymer nanocomposites. Adv. Eng. Mater. 8(3), 147–154 (2006)

    Google Scholar 

  353. N. Fujita, M. Asai, T. Yamashita, S. Shinkai, Sol-gel transcription of silica-based hybrid nanostructures using poly(n-vinylpyrrolidone)-coated [60] fullerene, single-walled carbon nanotube and block copolymer templates. J. Mater. Chem. 14, 2106–2114 (2004)

    Google Scholar 

  354. P.J.F. Harris, Carbon nanotube composites. Int. Mater. Rev. 49(1), 31–43 (2004)

    Google Scholar 

  355. T. Hasan, Z.P. Sun, F.Q. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 21(38–39), 3874–3899 (2009)

    Google Scholar 

  356. P. Liu, Modifications of carbon nanotubes with polymers. Eur. Polym. J. 41(11), 2693–2703 (2005)

    Google Scholar 

  357. S.S. Samal, S. Bal, Carbon nanotube reinforced ceramic matrix composites—a review. J. Miner. Mater. Charact. Eng. 7(4), 355–370 (2008)

    Google Scholar 

  358. D. Srivastava, C. Wei, K. Cho, Nanomechanics of carbon nanotubes and composites. Appl. Mech. Rev. 56(2), 215–230 (2003)

    ADS  Google Scholar 

  359. J. Suhr, N.A. Koratkar, Energy dissipation in carbon nanotube composites: a review. J. Mater. Sci. 43(13), 4370–4382 (2008)

    ADS  Google Scholar 

  360. J. Wang, Y. Chen, W.J. Blau, Carbon nanotubes and nanotube composites for nonlinear optical devices. J. Mater. Chem. 19(40), 7425–7443 (2009)

    Google Scholar 

  361. A.A. White, S.M. Best, I.A. Kinloch, Hydroxyapatite-carbon nanotube composites for biomedical applications: a review. Int. J. Appl. Ceram. Technol. 4(1), 1–13 (2007)

    Google Scholar 

  362. S. Wijewardane, Potential applicability of CNT and CNT/composites to implement ASEC concept: a review article. Sol. Energy 83(8), 1379–1389 (2009)

    Google Scholar 

  363. X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. R Rep. 49(4), 89–112 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, Z., Lan, Y., Wang, Y. (2012). Properties and Applications of Aligned Carbon Nanotube Arrays. In: Aligned Carbon Nanotubes. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30490-3_8

Download citation

Publish with us

Policies and ethics