Skip to main content

Physics of Direct Current Plasma-Enhanced Chemical Vapor Deposition

  • Chapter
  • First Online:
Aligned Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Among various chemical vapor deposition methods, direct-current plasma-enhanced chemical vapor deposition is one of the most important methods to align carbon nanotubes. Highly ordered carbon nanotube arrays can be in situ grown by the method, widely being used in various chemical and biosensors. In this chapter, we introduce the equipment, physics, and experimental parameters of direct-current plasma-enhanced chemical vapor deposition to in situ grow carbon nanotube arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97(4), 041301/1–041301/39 (2005)

    Google Scholar 

  2. M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 12(2), 205–216 (2003)

    Article  ADS  Google Scholar 

  3. Y. Wang, Nanophotonics of vertically aligned carbon nanotubes: two-dimensional photonic crystals and optical dipole antenna. Ph.D. thesis, Boston College, 2006

    Google Scholar 

  4. Persistence of Vision Pty. Ltd, Persistence of Vision Raytracer (Version 3.6) (2004)

    Google Scholar 

  5. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)

    Article  ADS  Google Scholar 

  6. Y. Wang, S.H. Jo, S. Chen, D.Z. Wang, Z.F. Ren, Aligned carbon nanofibres by a low-energy dark discharge for field emission and optoelectronics. Nanotechnology 17(2), 501–505 (2006)

    Article  ADS  Google Scholar 

  7. S. Hofmann, G. Csányi, A.C. Ferrari, M.C. Payne, J. Robertson, Surface diffusion: the low activation energy path for nanotube growth. Phys. Rev. Lett. 95(3), 036101/1–036101/4 (2005)

    Google Scholar 

  8. S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003)

    Article  ADS  Google Scholar 

  9. Z. Yu, S. Li, P.J. Burke, Synthesis of aligned arrays of millimeter long, straight single-walled carbon nanotubes. Chem. Mater. 16(18), 3414–3416 (2004)

    Article  Google Scholar 

  10. E.J. Bae, Y.-S. Min, D. Kang, J.-H. Ko, W. Park, Low-temperature growth of single-walled carbon nanotubes by plasma enhanced chemical vapor deposition. Chem. Mater. 17(20), 5141–5145 (2005)

    Article  Google Scholar 

  11. K.B.K. Teo, D.B. Hash, R.G. Lacerda, N.L. Rupesinghe, M.S. Bell, S.H. Dalal, D. Bose, T.R. Govindan, B.A. Cruden, M. Chhowalla, G.A.J. Amaratunga, M. Meyyappan, W.I. Milne, The significance of plasma heating in carbon nanotube and nanofiber growth. Nano Lett. 4(5), 921–926 (2004)

    Article  ADS  Google Scholar 

  12. Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett. 73(26), 3845–3847 (1998)

    Article  ADS  Google Scholar 

  13. X. Wang, K. Kempa, Z.F. Ren, B. Kimball, Rapid photon flux switching in two-dimensional photonic crystals. Appl. Phys. Lett. 84(11), 1817–1819 (2004)

    Article  ADS  Google Scholar 

  14. J.H. Choi, T.Y. Lee, S.H. Choi, J.-H. Han, J.-B. Yoo, C.-Y. Park, T. Jung, S. Yu, W. Yi, I.T. Han, J.M. Kim, Density control of carbon nanotubes using \(\text{ NH}_3\) plasma treatment of Ni catalyst layer. Thin Solid Films 435(1–2), 318–323 (2003)

    Google Scholar 

  15. S.H. Lim, K.C. Park, J.H. Moon, H.S. Yoon, D. Pribat, Y. Bonnassieux, J. Jang, Controlled density of vertically aligned carbon nanotubes in a triode plasma chemical vapor deposition system. Thin Solid Films 515(4), 1380–1384 (2006)

    Article  ADS  Google Scholar 

  16. J.H. Choi, T.Y. Lee, S.H. Choi, J. Han, J. Yoo, C. Park, T. Jung, S.G. Yu, W. Yi, I. Han, J.M. Kim, Control of carbon nanotubes density through ni nanoparticle formation using thermal and \(\text{ NH}_3\) plasma treatment. Diamond Relat. Mater. 12(3–7), 794–798 (2003)

    Google Scholar 

  17. J.R. Roth, Industrial Plasma Engineering (Institute of Physics Publishing, Bristol, 1995), Chap. 8–9

    Google Scholar 

  18. J. Fowlkes, A. Melechko, K. Klein, P. Rack, D. Smith, D. Hensley, M. Doktycz, M. Simpson, Control of catalyst particle crystallographic orientation in vertically aligned carbon nanofiber synthesis. Carbon 44(8), 1503–1510 (2006)

    Article  Google Scholar 

  19. F. Silly, M.R. Castell, Fe nanocrystal growth on \(\text{ SrTiO}_3\) (001). Appl. Phys. Lett. 87(6), 063106 (2005)

    Article  ADS  Google Scholar 

  20. H. Zhou, D. Kumar, A. Kvit, A. Tiwari, J. Narayan, Formation of self-assembled epitaxial nickel nanostructures. J. Appl. Phys. 94(8), 4841–4846 (2003)

    Article  ADS  Google Scholar 

  21. M.W. Geis, D.C. Flanders, H.I. Smith, Crystallographic orientation of silicon on an amorphous substrate using an artificial surface-relief grating and laser crystallization. Appl. Phys. Lett. 35(1), 71–74 (1979)

    Article  ADS  Google Scholar 

  22. A.L. Giermann, C.V. Thompson, Solid-state dewetting for ordered arrays of crystallographically oriented metal particles. Appl. Phys. Lett. 86(12), 121903 (2005)

    Article  ADS  Google Scholar 

  23. Y.-J. Oh, C.A. Ross, Y.S. Jung, Y. Wang, C.V. Thompson, Cobalt nanoparticle arrays made by templated solid-state dewetting. Small 5(7), 860–865 (2009)

    Article  Google Scholar 

  24. T.E. McKnight, A.V. Melechko, D.W. Austin, T. Sims, M.A. Guillorn, M.L. Simpson, Microarrays of vertically-aligned carbon nanofiber electrodes in an open fluidic channel. J. Phys. Chem. B 108(22), 7115–7125 (2004)

    Article  Google Scholar 

  25. S. Hong, Y.-H. Shin, J. Ihm, Crystal shape of a nickel particle related to carbon nanotube growth. Jpn. J. Appl. Phys. 41(Part 1, 10), 6142–6144 (2002)

    Google Scholar 

  26. S. Reich, L. Li, J. Robertson, Control the chirality of carbon nanotubes by epitaxial growth. Chem. Phys. Lett. 421(4–6), 469–472 (2006)

    Article  ADS  Google Scholar 

  27. S. Reich, L. Li, J. Robertson, Structure and formation energy of carbon nanotube caps. Phys. Rev. B 72(16), 165423/1–165423/8 (2005)

    Google Scholar 

  28. J.F. AuBuchon, L. Chen, S. Jin, Control of carbon capping for regrowth of aligned carbon nanotubes. J. Phys. Chem. B 109(13), 6044–6048 (2005)

    Article  Google Scholar 

  29. J.F. AuBuchon, L. Chen, C. Daraio, S. Jin, Multibranching carbon nanotubes via self-seeded catalysts. Nano Lett. 6(2), 324–328 (2006)

    Article  ADS  Google Scholar 

  30. H. Wang, Z.F. Ren, The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Nanotechnology 22(40), 405601 (2011)

    Article  Google Scholar 

  31. Z. Huang, D. Wang, J. Wen, M. Sennett, H. Gibson, Z. Ren, Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl. Phys. A 74(3), 387–391 (2002)

    Article  ADS  Google Scholar 

  32. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90(10), 5308–5317 (2001)

    Article  ADS  Google Scholar 

  33. A. Gohier, T.M. Minea, M.A. Djouadi, A. Granier, Impact of the etching gas on vertically oriented single wall and few walled carbon nanotubes by plasma enhanced chemical vapor deposition. J. Appl. Phys. 101(5), 054317 (2007)

    Article  ADS  Google Scholar 

  34. V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Appl. Phys. Lett. 79(18), 2970–2972 (2001)

    Article  ADS  Google Scholar 

  35. A.V. Melechko, V.I. Merkulov, D.H. Lowndes, M.A. Guillorn, M.L. Simpson, Transition between ‘base’ and ‘tip’ carbon nanofiber growth modes. Chem. Phys. Lett. 356(5–6), 527–533 (2002)

    Article  ADS  Google Scholar 

  36. Y. Wang, J. Rybczynski, D.Z. Wang, K. Kempa, Z.F. Ren, W.Z. Li, B. Kimball, Periodicity and alignment of large-scale carbon nanotubes arrays. Appl. Phys. Lett. 85(20), 4741–4743 (2004)

    Article  ADS  Google Scholar 

  37. C. Zhang, S. Pisana, C. Wirth, A. Parvez, C. Ducati, S. Hofmann, J. Robertson, Growth of aligned millimeter-long carbon nanotube by chemical vapor deposition. Diam. Relat. Mater. 17(7–10), 1447–1451 (2008)

    Google Scholar 

  38. K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, J. Olivier, D. Pribat, Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy. J. Vac. Sci. Technol. B 20(1), 116–121 (2002)

    Article  Google Scholar 

  39. S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, J.Y. Huang, D.Z. Wang, Z.F. Ren, Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes. Appl. Phys. Lett. 84(3), 413–415 (2004)

    Article  ADS  Google Scholar 

  40. L. Qu, L. Dai, M. Stone, Z. Xia, Z.L. Wang, Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322(5899), 238–242 (2008)

    Article  ADS  Google Scholar 

  41. V.I. Merkulov, D.H. Lowndes, Y.Y. Wei, G. Eres, E. Voelkl, Patterned growth of individual and multiple vertically aligned carbon nanofibers. Appl. Phys. Lett. 76(24), 3555–3557 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, Z., Lan, Y., Wang, Y. (2012). Physics of Direct Current Plasma-Enhanced Chemical Vapor Deposition. In: Aligned Carbon Nanotubes. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30490-3_5

Download citation

Publish with us

Policies and ethics