Skip to main content

Growth Techniques of Carbon Nanotubes

  • Chapter
  • First Online:
  • 2122 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Random carbon nanotubes have been synthesized from many methods. Based on the understanding of the growth mechanism from these methods, aligned carbon nanotubes have been in situ grown. Randomly grown carbon nanotubes can also be aligned using ex situ methods. In this chapter we introduce various methods to grow carbon nanotubes. The grown nanotubes are aligned or random during growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y. Saito, M. Inagaki, Optical emission studies on chemical species in an arc flame of fullerene/metallofullerene generator. Jpn. J. Appl. Phys. 32(Part 2, No. 7A), L954–L957 (1993)

    Google Scholar 

  2. A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation. Atomic, Optical, and Plasma Physics, (Springer, 2010)

    Google Scholar 

  3. S. Iijima, Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J. Cryst. Growth 50(3), 675–683 (1980)

    ADS  Google Scholar 

  4. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, \(\text{C}_{60}\): Buckminsterfullerene. Nature 318, 162–163 (1985)

    Google Scholar 

  5. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    ADS  Google Scholar 

  6. T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358(6383), 220–222 (1992)

    ADS  Google Scholar 

  7. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)

    ADS  Google Scholar 

  8. D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 (1993)

    ADS  Google Scholar 

  9. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, P. Deniard, R. Leek, J.E. Fischer, Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–768 (1997)

    ADS  Google Scholar 

  10. P. Chaturvedi, P. Verma, A. Singh, P.K. Chaudhary, Harsh, P.K. Basu, Carbon nanotube - purification and sorting protocol. Defence Sci. J. 58(5), 591–599 (2008)

    Google Scholar 

  11. S.K. Pillai, S.S. Ray, M. Moodley, Purification of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 7(9), 3011–3047 (2007)

    Google Scholar 

  12. S.K. Pillai, S.S. Ray, M. Moodley, Purification of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 8(12), 6187–6207 (2008)

    Google Scholar 

  13. M. Daenen, R.D. de Fouw, B. Hamers, P.G.A. Janssen, K. Schouteden, M.A.J. Veld, The Wondrous World of Carbon Nanotubes: A Review of Current Carbon Nanotube Technologies, Technical Report, (Eindhoven University of Technology, Eindhoven, 2003)

    Google Scholar 

  14. K. MacKenzie, O. Dunens, A.T. Harris, A review of carbon nanotube purification by microwave assisted acid digestion. Sep. Purif. Technol. 66(2), 209–222 (2009)

    Google Scholar 

  15. X. Song, Y. Fang, A technique of purification process of single-walled carbon nanotubes with air. Spectrochim. Acta A 67(3–4), 1131–1134 (2007)

    ADS  Google Scholar 

  16. M. Ushio, D. Fan, M. Tanaka, A method of estimating the space-charge voltage drop for thermionic arc cathodes. J. Phys. D: Appl. Phys. 27(3), 561–566 (1994)

    ADS  Google Scholar 

  17. E.G. Gamaly, Growth mechanism of carbon nanotubes, in Carbon Nanotubes: Preparation and Properties, ed. by T.W. Ebbesen. (Chemical Rubber, Boca Raton, 1997), pp. 164–190

    Google Scholar 

  18. S. Farhat, C.D. Scott, Review of the arc process modeling for fullerene and nanotube production. J. Nanosci. Nanotechnol. 6(5), 1189–1210 (2006)

    Google Scholar 

  19. B. Ahmad, M. Ahmad, J. Akhter, N. Ahmad, Formation of diamond-like carbon balls, self aligned and nonaligned nanotubes at the tip of the cathode during the synthesis of fullerenes in the DC arc discharge experiment. Mater. Lett. 59(12), 1585–1588 (2005)

    Google Scholar 

  20. R. Ismagilov, P. Shvets, A. Kharin, A. Obraztsov, Noncatalytic synthesis of carbon nanotubes by chemical vapor deposition. Crystallogr. Rep. 56(2), 310–314 (2011)

    ADS  Google Scholar 

  21. A.P. Moravsky, E.M. Wexler, R.O. Loutfy, Growth of carbon nanotubes by arc discharge and laser ablation, in Carbon Nanotubes: Science and Applications, ed. by M. Meyyappan. (CRC Press, Boca Raton, 2004) pp. 80–121

    Google Scholar 

  22. P.J.F. Harris, Solid state growth mechanisms for carbon nanotubes. Carbon 45(2), 229–239 (2007)

    Google Scholar 

  23. B. Yakobson, R. Smalley, Fullerene nanotubes: C1,000,000 and beyond. Am. Sci. 85, 324–337 (1997)

    ADS  Google Scholar 

  24. T. Guo, P. Nikolaev, A. Thess, D. Colbert, R. Smalley, Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 243(1–2), 49–54 (1995)

    Google Scholar 

  25. T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley, Self-assembly of tubular fullerenes. J. Phys. Chem. 99(27), 10694–10697 (1995)

    Google Scholar 

  26. C. Scott, S. Arepalli, P. Nikolaev, R. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A: Mater. 72, 573–580 (2001)

    ADS  Google Scholar 

  27. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)

    ADS  Google Scholar 

  28. Z.Y. Kosakovskaya, L.A. Chemozatonskii, E.A. Fedorov, Nanofilament carbon structure. JETP Lett. 56(1), 26–30 (1992)

    ADS  Google Scholar 

  29. M. Ge, K. Sattler, Vapor-condensation generation and STM analysis of fullerene tubes. Science 260(5107), 515–518 (1993)

    ADS  Google Scholar 

  30. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 (1996)

    ADS  Google Scholar 

  31. P.L. Walker, J.F. Rakszawski, G.R. Imperial, Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysts. I. properties of carbon formed. J. Phys. Chem. B 63(2), 133–140 (1959)

    Google Scholar 

  32. M. José-Yacamán, M. Miki-Yoshida, L. Rendón, J.G. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett. 62(6), 657–659 (1993)

    ADS  Google Scholar 

  33. Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian, Very long carbon nanotubes. Nature 394(6694), 631–632 (1998)

    ADS  Google Scholar 

  34. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)

    ADS  Google Scholar 

  35. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Controlled production of aligned-nanotube bundles. Nature 388(6637), 52–55 (1997)

    ADS  Google Scholar 

  36. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)

    ADS  Google Scholar 

  37. A. Peigney, P. Coquay, E. Flahaut, R.E. Vandenberghe, E. De Grave, C. Laurent, A study of the formation of single- and double-walled carbon nanotubes by a CVD method. J. Phys. Chem. B 105(40), 9699–9710 (2001)

    Google Scholar 

  38. H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Direct synthesis of long single-walled carbon nanotube strands. Science 296(5569), 884–886 (2002)

    ADS  Google Scholar 

  39. Z.F. Ren, Z.P. Huang, D.Z. Wang, J.G. Wen, J.W. Xu, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M.A. Reed, Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 75(8), 1086–1088 (1999)

    ADS  Google Scholar 

  40. Y.C. Choi, Y.M. Shin, S.C. Lim, D.J. Bae, Y.H. Lee, B.S. Lee, D.C. Chung, Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. J. Appl. Phys. 88, 4898–4903 (2000)

    ADS  Google Scholar 

  41. H.T. Ng, M.L. Foo, A.P. Fang, J. Li, G.Q. Xu, S. Jaenicke, L. Chan, S.F.Y. Li, Soft-lithography-mediated chemical vapor deposition of architectured carbon nanotube networks on elastomeric polymer. Langmuir 18(1), 1–5 (2002)

    Google Scholar 

  42. Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett. 73(26), 3845–3847 (1998)

    ADS  Google Scholar 

  43. Z.P. Huang, D.L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wang, J.G. Wen, K. Kempa, Z.F. Ren, Growth of large periodic arrays of carbon nanotubes. Appl. Phys. Lett. 82(3), 460–462 (2003)

    ADS  Google Scholar 

  44. M.W. Li, Z. Hu, X.Z. Wang, Q. Wu, Y. Chen, Low-temperature synthesis of carbon nanotubes using corona discharge plasma reaction at atmospheric pressure. J. Mater. Sci. Lett. 22(17), 1223–1224 (2003)

    Google Scholar 

  45. J. Li, C. Papadopoulos, J.M. Xu, M. Moskovits, Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett. 75(3), 367–369 (1999)

    ADS  Google Scholar 

  46. J. Li, C. Papadopoulos, J. Xu, Nanoelectronics: Growing Y-junction carbon nanotubes. Nature 402(6759), 253–254 (1999)

    ADS  Google Scholar 

  47. Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowndes, Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Appl. Phys. Lett. 78(10), 1394–1396 (2001)

    ADS  Google Scholar 

  48. X. Xu, G.R. Brandes, A method for fabricating large-area, patterned, carbon nanotube field emitters. Appl. Phys. Lett. 74(17), 2549–2551 (1999)

    ADS  Google Scholar 

  49. E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)

    ADS  Google Scholar 

  50. W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Controlled growth of carbon nanotubes on graphite foil by chemical vapor deposition. Chem. Phys. Lett. 335, 141–149 (2001)

    ADS  Google Scholar 

  51. A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97(4), 041301/1–041301/39 (2005)

    Google Scholar 

  52. A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32(3), 335–349 (1976)

    ADS  Google Scholar 

  53. S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265(5172), 635–639 (1994)

    ADS  Google Scholar 

  54. J.B. Nagy, G. Bister, A. Fonseca, D. Méhn, Z. Kónya, I. Kiricsi, Z.E. Horváth, L.P. Biró, On the growth mechanism of single-walled carbon nanotubes by catalytic carbon vapor deposition on supported metal catalysts. J. Nanosci. Nanotechnol. 4(4), 4326–345 (2004)

    Google Scholar 

  55. S. Helveg, C. López-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Nórskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429 (2004)

    ADS  Google Scholar 

  56. H. Zhu, K. Suenaga, A. Hashimoto, K. Urita, K. Hata, S. Iijima, Atomic-resolution imaging of the nucleation points of single-walled carbon nanotubes. Small 1(12), 1180–1183 (2005)

    Google Scholar 

  57. F. Ding, K. Bolton, A. Rosén, Nucleation and growth of single-walled carbon nanotubes: A molecular dynamics study. J. Phys. Chem. B 108(45), 17369–17377 (2004)

    Google Scholar 

  58. R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, R.J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26(1), 51–62 (1972)

    Google Scholar 

  59. M. Audier, M. Coulon, Kinetic and microscopic aspects of catalytic carbon growth. Carbon 23(3), 317–323 (1985)

    Google Scholar 

  60. M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, A. Sarkar, Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon 33(7), 873–881 (1995)

    Google Scholar 

  61. J.-C. Charlier, A. De Vita, X. Blase, R. Car, Microscopic growth mechanisms for carbon nanotubes. Science 275(5300), 647–649 (1997)

    Google Scholar 

  62. M. Yudasaka, R. Kikuchi, Y. Ohki, E. Ota, S. Yoshimura, Behavior of Ni in carbon nanotube nucleation. Appl. Phys. Lett. 70(14), 1817–1818 (1997)

    ADS  Google Scholar 

  63. J.C. Charlier, S. Iijima, Growth mechanisms of carbon nanotubes. in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, vol. 80, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Topics in Applied Physics, (Springer, Berlin, 2001), pp. 55–81

    Google Scholar 

  64. T.W. Ebbesen (ed.), Carbon Nanotubes: Preparation and Properties. (Chemical Rubber, Boca Raton, 1997)

    Google Scholar 

  65. R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30(1), 86–95 (1973)

    Google Scholar 

  66. R.T.K. Baker, R.J. Waite, Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. J. Catal. 37(1), 101–105 (1975)

    Google Scholar 

  67. R.T.K. Baker, P.S. Harris, Chemistry and Physics of Carbon, (Dekker, New York, 1978)

    Google Scholar 

  68. R.T.K. Baker, J.J. Chludzinski, Filamentous carbon growth on nickel-iron surfaces: The effect of various oxide additives. J. Catal. 64(2), 464–478 (1980)

    Google Scholar 

  69. R. Baker, Catalytic growth of carbon filaments. Carbon 27(3), 315–323 (1989)

    Google Scholar 

  70. T. Baird, J. Fryer, B. Grant, Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at \(700\) \(^\circ \)C. Carbon 12(5), 591–602 (1974)

    Google Scholar 

  71. G.G. Tibbetts, Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes. Appl. Phys. Lett. 42(8), 666–668 (1983)

    ADS  Google Scholar 

  72. J. Bradley, G. Tibbetts, Improved yield of carbon fibers by pyrolysis of natural gas in stainless steel tubes. Carbon 23(4), 423–430 (1985)

    Google Scholar 

  73. H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, Y. Homma, Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 8(7), 2082–2086 (2008)

    ADS  Google Scholar 

  74. M. Meyyappan (ed.) Carbon Nanotubes: Science and Applications. (CRC Press, Boca Raton, 2004)

    Google Scholar 

  75. K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater. 53(2), 117–166 (2007)

    Google Scholar 

  76. B. Poudel, W.Z. Wang, D.Z. Wang, J.Y. Huang, Z.F. Ren, Shape evolution of lead telluride and selenide nanostructures under different hydrothermal synthesis conditions. J. Nanosci. Nanotechnol. 6(4), 1050–1053 (2006)

    Google Scholar 

  77. Y. Lan, X. Chen, Y. Cao, Y. Xu, L. Xun, T. Xu, J. Liang, Low-temperature synthesis and photoluminescence of AlN. J. Cryst. Growth 207(3), 247–250 (1999)

    ADS  Google Scholar 

  78. X. Chen, Y. Cao, Y. Lan, X. Xu, J. Li, K. Lu, P. Jiang, T. Xu, Z. Bai, Y. Yu, J. Liang, Synthesis and structure of nanocrystal-assembled bulk GaN. J. Cryst. Growth 209(1), 208–212 (2000)

    ADS  Google Scholar 

  79. G.C. Kennedy, Pressure-volume-temperature relations in water at elevated temperatures and pressures. Am. J. Sci. 248(8), 540–564 (1950)

    Google Scholar 

  80. W. Wang, B. Poudel, D.Z. Wang, Z.F. Ren, Synthesis of multiwalled carbon nanotubes through a modified Wolff-Kishner reduction process. J. Am. Chem. Soc. 127(51), 18018–18019 (2005)

    Google Scholar 

  81. M. Motiei, Y. Rosenfeld Hacohen, J. Calderon-Moreno, A. Gedanken, Preparing carbon nanotubes and nested fullerenes from supercritical \(\text{CO}_2\) by a chemical reaction. J. Am. Chem. Soc. 123(35), 8624–8625 (2001)

    Google Scholar 

  82. J.M. Calderon Moreno, M. Yoshimura, Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon. J. Am. Chem. Soc. 123(4), 741–742 (2001)

    Google Scholar 

  83. Y. Gogotsi, J.A. Libera, M. Yoshimura, Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res. 15(12), 2591–2594 (2000)

    ADS  Google Scholar 

  84. J. Liu, M. Shao, X. Chen, W. Yu, X. Liu, Y. Qian, Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process. J. Am. Chem. Soc. 125(27), 8088–8089 (2003)

    Google Scholar 

  85. D.C. Lee, F.V. Mikulec, B.A. Korgel, Carbon nanotube synthesis in supercritical toluene. J. Am. Chem. Soc. 126(15), 4951–4957 (2004)

    Google Scholar 

  86. Y. Jiang, Y. Wu, S. Zhang, C. Xu, W. Yu, Y. Xie, Y. Qian, A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J. Am. Chem. Soc. 122(49), 12383–12384 (2000)

    Google Scholar 

  87. W. Wang, S. Kunwar, J.Y. Huang, D.Z. Wang, Z.F. Ren, Low temperature solvothermal synthesis of multiwall carbon nanotubes. Nanotechnology 16(1), 21–23 (2005)

    ADS  Google Scholar 

  88. J.K. Vohs, J.J. Brege, J.E. Raymond, A.E. Brown, G.L. Williams, B.D. Fahlman, Low-temperature growth of carbon nanotubes from the catalytic decomposition of carbon tetrachloride. J. Am. Chem. Soc. 126, 9936–9937 (Aug. 2004)

    Google Scholar 

  89. S. Liu, J. Yue, R.J. Wehmschulte, Large thick flattened carbon nanotubes. Nano Lett. 2(12), 1439–1442 (2002)

    ADS  Google Scholar 

  90. W. Wang, J. Huang, D. Wang, Z. Ren, Low-temperature hydrothermal synthesis of multiwall carbon nanotubes. Carbon 43(6), 1328–1331 (2005)

    Google Scholar 

  91. S.S. Swamya, J.M. Calderon-Morenoa, M. Yoshimuraa, Stability of single-wall carbon nanotubes under hydrothermal conditions. J. Mater. Res. 17(4), 734–737 (2002)

    ADS  Google Scholar 

  92. J.-Y. Chang, B. Lo, M. Jeng, S.-H. Tzing, Y.-C. Ling, Morphological variation of multiwall carbon nanotubes in supercritical water oxidation. Appl. Phys. Lett. 85(13), 2613–2615 (2004)

    ADS  Google Scholar 

  93. Z. Wen, Q. Wang, J. Li, Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts. Adv. Funct. Mater. 18(6), 959–964 (2008)

    Google Scholar 

  94. W.R. Davis, R.J. Slawson, G.R. Rigby, An unusual form of carbon. Nature 171, 756–756 (1953)

    ADS  Google Scholar 

  95. W. Hu, D. Gong, Z. Chen, L. Yuan, K. Saito, C.A. Grimes, P. Kichambare, Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate. Appl. Phys. Lett. 79(19), 3083–3085 (2001)

    ADS  Google Scholar 

  96. L. Yuan, K. Saito, W. Hu, Z. Chen, Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes. Chem. Phys. Lett. 346(1–2), 23–28 (2001)

    ADS  Google Scholar 

  97. M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Patzke, D.C. Meyer, Materials: Carbon nanotubes in an ancient damascus sabre. Nature 444(7117), 286–286 (2006)

    ADS  Google Scholar 

  98. L. Yuan, K. Saito, C. Pan, F.A. Williams, A.S. Gordon, Nanotubes from methane flames. Chem. Phys. Lett. 340(3–4), 237–241 (2001)

    ADS  Google Scholar 

  99. M.J. Height, J.B. Howard, J.W. Tester, J.B.V. Sande, Flame synthesis of single-walled carbon nanotubes. Carbon 42(11), 2295–2307 (2004)

    Google Scholar 

  100. M.D. Diener, N. Nichelson, J.M. Alford, Synthesis of single-walled carbon nanotubes in flames. J. Phys. Chem. B 104(41), 9615–9620 (2000)

    Google Scholar 

  101. L. Yuan, T. Li, K. Saito, Growth mechanism of carbon nanotubes in methane diffusion flames. Carbon 41(10), 1889–1896 (2003)

    Google Scholar 

  102. R.L. Vander Wal, G.M. Berger, L.J. Hall, Single-walled carbon nanotube synthesis via a multi-stage flame configuration. J. Phys. Chem. B 106, 3564–3567 (2002)

    Google Scholar 

  103. W. Merchan-Merchan, A. Saveliev, L.A. Kennedy, A. Fridman, Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalysts. Chem. Phys. Lett. 354(1–2), 20–24 (2002)

    ADS  Google Scholar 

  104. L.V. Radushkevich, V.M. Lukyanovich, About the carbon structure, thermal CO decomposition on metal contact synthesized. J. Phys. Chem. Russia 26, 88–95 (1952)

    Google Scholar 

  105. H. Boehm, Carbon from carbon monoxide disproportionation on nickel and iron catalysts: Morphological studies and possible growth mechanisms. Carbon 11(6), 583–586 (1973)

    Google Scholar 

  106. H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260(3–4), 471–475 (1996)

    ADS  Google Scholar 

  107. P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313(1–2), 91–97 (1999)

    ADS  Google Scholar 

  108. P. Nikolaev, Gas-phase production of single-walled carbon nanotubes from carbon monoxide: A review of the HiPco process. J. Nanosci. Nanotechnol. 4(4), 307–316 (2004)

    MathSciNet  Google Scholar 

  109. T.V. Hughes, C.R. Chambers, Manufacture of carbon filaments”, in U.S. Patent 000405480, 1889

    Google Scholar 

  110. M.I. Ionescu, Y. Zhang, R. Li, X. Sun, H. Abou-Rachid, L.-S. Lussier, Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: Parametric studies. Appl. Surf. Sci. 257(15), 6843–6849 (2011)

    ADS  Google Scholar 

  111. W.K. Hsu, J. Hare, M. Terrones, H. Kroto, D.R. Walton, P.J. Harris, Condensed-phase nanotubes. Nature 377(6551), 687–687 (1995)

    ADS  Google Scholar 

  112. W. Hsu, M. Terrones, J. Hare, H. Terrones, H. Kroto, D. Walton, Electrolytic formation of carbon nanostructures. Chem. Phys. Lett. 262(1–2), 161–166 (1996)

    ADS  Google Scholar 

  113. W.K. Hsu, J. Li, H. Terrones, M. Terrones, N. Grobert, Y.Q. Zhu, S. Trasobares, J.P. Hare, C.J. Pickett, H.W. Kroto, D.R.M. Walton, Electrochemical production of low-melting metal nanowires. Chem. Phys. Lett. 301(1–2), 159–166 (1999)

    ADS  Google Scholar 

  114. G.Z. Chen, I. Kinloch, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Electrochemical investigation of the formation of carbon nanotubes in molten salts. High Temp. Mater. Process. 2(4), 459–469 (1998)

    Google Scholar 

  115. M. Terrones, Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res. 33, 419–501 (2003)

    ADS  Google Scholar 

  116. H. Dai, Carbon nanotubes: Opportunities and challenges. Surf. Sci. 500(1–3), 218–241 (2002)

    ADS  Google Scholar 

  117. H.J. Dai, Nanotube growth and characterization, in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, vol. 80, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Topics in Applied Physics, (Springer, Berlin, 2001), pp. 29–53

    Google Scholar 

  118. D. Laplaze, P. Bernier, W. Maser, G. Flamant, T. Guillard, A. Loiseau, Carbon nanotubes: The solar approach. Carbon 36(5–6), 685–688 (1998)

    Google Scholar 

  119. L. Alvarez, T. Guillard, J. Sauvajol, G. Flamant, D. Laplaze, Solar production of single-wall carbon nanotubes: growth mechanisms studied by electron microscopy and raman spectroscopy. Appl. Phys. A: Mater. Sci. Process. 70(2), 169–173 (2000)

    ADS  Google Scholar 

  120. C. Baddour, C. Briens, Carbon nanotube synthesis: a review. Int. J. Chem. Reactor Eng. 3, R3 (2005)

    Google Scholar 

  121. N. Bajwa, X. S. Li, P.M. Ajayan, R. Vajtai, Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes. J. Nanosci. Nanotechnol. 8(11), 6054–6064 (2008)

    Google Scholar 

  122. Q. Zhang, J.-Q. Huang, M.-Q. Zhao, W.-Z. Qian, F. Wei, Carbon nanotube mass production: Principles and processes. ChemSusChem 4, 864–889 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, Z., Lan, Y., Wang, Y. (2012). Growth Techniques of Carbon Nanotubes. In: Aligned Carbon Nanotubes. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30490-3_3

Download citation

Publish with us

Policies and ethics