Skip to main content

Carbon Nanotubes

  • Chapter
  • First Online:
Aligned Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

  • 2270 Accesses

Abstract

The carbon atoms in a carbon nanotube (CNT) are bonded trigonally in a curved sheet (graphite layer) that forms a hollow cylinder in nanoscale, similar to that in other fullerenes. The length of CNTs may range from less than a micron to several millimeters or even centimeters. Their unique nanostructures result in many extraordinary properties such as high tensile strength, high electrical and thermal conductivities, high ductility, high thermal and chemical stability, making them suitable for various applications as discussed in Chapter 8: Properties and Applications of Aligned Carbon Nanotube Arrays and Chapter 9 : Potential Applications of Carbon Nanotube Arrays. In this chapter, we review the history and structures of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Rand, S.P. Appleyard, M.F. Yardim (eds.) Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance. NATO Science Series E: applied sciences, vol. 374 (Kluwer Academic Publishers, Dordrecht, 2001)

    Google Scholar 

  2. L.P. Biró, C.A. Bernardo, G.G. Tibbetts, P. Lambin (eds.) Carbon Filaments and Nanotubes: common origins, differing applications?. NATO Science Series E: applied sciences, vol. 372 (Kluwer Academic Publishers, Dordrecht, 2001)

    Google Scholar 

  3. S. Saito, A. Zettl (eds.) Carbon Nanotubes: quantum cylinders of graphene. Contemporary Concepts of Condensed Matter Science (Elsevier, Netherlands, 2008)

    Google Scholar 

  4. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Google Scholar 

  5. T.V. Hughes, C.R. Chambers, Manufacture of carbon filaments, U.S. Patent 000405480, 1889

    Google Scholar 

  6. P. Schützenberger, L. Schützenberger, Sur quelques faits relatifs à l’histoire du carbone. C. R. Acad. Sci. Paris 111, 774–778 (1890)

    Google Scholar 

  7. C. Pélabon, H. Pélabon, Sur une variétë de carbone filamenteux. C. R. Acad. Sci. Paris 137, 706–708 (1903)

    Google Scholar 

  8. L.V. Radushkevich, V.M. Lukyanovich, About the carbon structure, thermal CO decomposition on metal contact synthesized. J. Phys. Chem. Russia 26, 88–95 (1952)

    Google Scholar 

  9. M. Hillert, N. Lange, The structure of graphite filaments. Z. Kristallogr. 111, 24–34 (1958)

    Google Scholar 

  10. A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32(3), 335–349 (1976)

    Google Scholar 

  11. J. Abrahamson, P.G. Wiles, B.L. Rhoades, Structure of carbon fibers found on carbon arc anodes. in 14th Biennial Conference on Carbon American Carbon Society, University Park, PA, June 1979

    Google Scholar 

  12. J. Abrahamson, P. Wiles, B. Rhoades, Structure of carbon fibers found on carbon arc anodes. Carbon 37(11), 1873–1874 (1999)

    Google Scholar 

  13. H.G. Tennent, Carbon fibrils, method for producing same and compositions containing same. U.S. Patent 4663230 (Kennett Square, PA, 1987)

    Google Scholar 

  14. G.E. Scuseria, Negative curvature and hyperfullerenes. Chem. Phys. Lett. 195(5–6), 534–536 (1992)

    Google Scholar 

  15. J.W. Mintmire, B.I. Dunlap, C.T. White, Are fullerene tubules metallic? Phys. Rev. Lett. 68(5), 631–634 (1992)

    Google Scholar 

  16. N. Hamada, S.-I. Sawada, A. Oshiyama, New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett. 68(10), 1579–1581 (1992)

    Google Scholar 

  17. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of graphene tubules based on \(\text{C}_{60}\). Phys. Rev. B 46(3), 1804–1811 (1992)

    Google Scholar 

  18. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)

    Google Scholar 

  19. D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 (1993)

    Google Scholar 

  20. J.Q. Hu, Y. Bando, F.F. Xu, Y.B. Li, J.H. Zhan, J.Y. Xu, D. Golberg, Growth and field-emission properties of crystalline, thin-walled carbon microtubes. Adv. Mater. 16(2), 153–156 (2004)

    Google Scholar 

  21. A.G. Nasibulin, A.S. Anisimov, P.V. Pikhitsa, H. Jiang, D.P. Brown, M. Choi, E.I. Kauppinen, Investigations of nanobud formation. Chem. Phys. Lett. 446(1–3), 109–114 (2007)

    Google Scholar 

  22. M. Monthioux, V.L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes? Carbon 44(9), 1621–1623 (2006)

    Google Scholar 

  23. M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Patzke, D.C. Meyer, Materials: carbon nanotubes in an ancient damascus sabre. Nature 444(7117), 286–286 (2006)

    Google Scholar 

  24. A. Oberlin, M. Endo, T. Koyama, High resolution electron microscope observations of graphitized carbon fibers. Carbon 14(2), 133–135 (1976)

    Google Scholar 

  25. H. Boehm, Carbon from carbon monoxide disproportionation on nickel and iron catalysts: morphological studies and possible growth mechanisms. Carbon 11(6), 583–586 (1973)

    Google Scholar 

  26. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, \(\text{C}_{60}\): Buckminsterfullerene. Nature 318, 162–163 (1985)

    Google Scholar 

  27. J.A.E. Gibson, Early nanotubes? Nature 359(6394), 369–369 (1992)

    Google Scholar 

  28. H.P. Boehm, The first observation of carbon nanotubes. Carbon 35(4), 581–584 (1997)

    Google Scholar 

  29. X.H. Chen, C.S. Chen, Q. Chen, F.Q. Cheng, G. Zhang, Z.Z. Chen, Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD. Mater. Lett. 57(3), 734–738 (2002)

    Google Scholar 

  30. P. Chaturvedi, P. Verma, A. Singh, P.K. Chaudhary, P.K. Harsh, P.K. Basu, Carbon nanotube—purification and sorting protocols, Defence Sci. J. 58(5), 591–599, 2008

    Google Scholar 

  31. K. MacKenzie, O. Dunens, A.T. Harris, A review of carbon nanotube purification by microwave assisted acid digestion. Sep. Purif. Technol. 66(2), 209–222 (2009)

    Google Scholar 

  32. S.K. Pillai, S.S. Ray, M. Moodley, Purification of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 7(9), 3011–3047 (2007)

    Google Scholar 

  33. S.K. Pillai, S.S. Ray, M. Moodley, Purification of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 8(12), 6187–6207 (2008)

    Google Scholar 

  34. X. Song, Y. Fang, A technique of purification process of single-walled carbon nanotubes with air. Spectrochim. Acta A 67(3–4), 1131–1134 (2007)

    Google Scholar 

  35. T. Guo, P. Nikolaev, A. Thess, D. Colbert, R. Smalley, Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 243(1–2), 49–54 (1995)

    Google Scholar 

  36. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)

    Google Scholar 

  37. J. Li, C. Papadopoulos, J. Xu, Nanoelectronics: growing Y-junction carbon nanotubes. Nature 402(6759), 253–254 (1999)

    Google Scholar 

  38. B.C. Satishkumar, P.J. Thomas, A. Govindaraj, C.N.R. Rao, Y junction carbon nanotubes. Appl. Phys. Lett. 77(16), 2530–2532 (2000)

    Google Scholar 

  39. W.Z. Li, J.G. Wen, Z.F. Ren, Straight carbon nanotube Y junctions. Appl. Phys. Lett. 79(12), 1879–1881 (2001)

    Google Scholar 

  40. A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov, A.S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S.D. Shandakov, G. Lolli, D.E. Resasco, M. Choi, D. Tománek, E.I. Kauppinen, A novel hybrid carbon material. Nat. Nanotechnol. 2(3), 156–161 (2007)

    Google Scholar 

  41. L. Liu, G.Y. Guo, C.S. Jayanthi, S.Y. Wu, Colossal paramagnetic moments in metallic carbon nanotori. Phys. Rev. Lett. 88, 217206 (2002)

    Google Scholar 

  42. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 (1996)

    Google Scholar 

  43. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Controlled production of aligned-nanotube bundles. Nature 388(6637), 52–55 (1997)

    Google Scholar 

  44. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)

    Google Scholar 

  45. Z.F. Ren, Z.P. Huang, D.Z. Wang, J.G. Wen, J.W. Xu, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M.A. Reed, Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 75(8), 1086–1088 (1999)

    Google Scholar 

  46. Z.P. Huang, D.L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wang, J.G. Wen, K. Kempa, Z.F. Ren, Growth of large periodic arrays of carbon nanotubes. Appl. Phys. Lett. 82(3), 460–462 (2003)

    Google Scholar 

  47. K. Kempa, B. Kimball, J. Rybczynski, Z.P. Huang, P.F. Wu, D. Steeves, M. Sennett, M. Giersig, D.V.G.L.N. Rao, D.L. Carnahan, D.Z. Wang, J.Y. Lao, W.Z. Li, Z.F. Ren, Photonic crystals based on periodic arrays of aligned carbon nanotubes. Nano Lett. 3(1), 13–18 (2003)

    Google Scholar 

  48. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)

    Google Scholar 

  49. G-Y. Xiong, D. Wang, Z. Ren, Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 44(5), 969–973 (2006)

    Google Scholar 

  50. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700), 1362–1364 (2004)

    Google Scholar 

  51. P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265(5176), 1212–1214 (1994)

    Google Scholar 

  52. W.A. de Heer, W.S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, D. Ugarte, Aligned carbon nanotube films: production and optical and electronic properties. Science 268(5212), 845–847 (1995)

    Google Scholar 

  53. B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P.M. Ajayan, Microfabrication technology: organized assembly of carbon nanotubes. Nature 416(6880), 495–496 (2002)

    Google Scholar 

  54. S.G. Rao, L. Huang, W. Setyawan, S. Hong, Nanotube electronics: large-scale assembly of carbon nanotubes. Nature 425(6953), 36–37 (2003)

    Google Scholar 

  55. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes: their properties and applications (Academic Press, New York, 1996)

    Google Scholar 

  56. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific, Singapore, 1998)

    Google Scholar 

  57. P.J.F. Harris, Carbon Nanotubes and Related Structures: new materials for the twenty-first century (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  58. M.S. Dresselhaus, G. Dresselhaus, P. Avouris (eds.), Carbon Nanotubes: synthesis, structure, properties, and applications. Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001)

    Google Scholar 

  59. T.W. Ebbesen (ed.), Carbon Nanotubes: preparation and properties (Chemical Rubber, Boca Raton, 1997)

    Google Scholar 

  60. K. Tanaka, T. Yamabe, K. Fukui (eds.), The Science and Technology of Carbon Nanotubes (Elsevier, Amsterdam, 1999)

    Google Scholar 

  61. C. Hierold (ed.), Carbon Nanotube Devices: properties, modeling, integration and applications. Advanced Micro & Nanosystems, vol. 8 (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  62. M. Meyyappan (ed.), Carbon Nanotubes: Science and Applications (CRC Press, Boca Raton, 2004)

    Google Scholar 

  63. S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: basic concepts and physical properties (Wiley-VCH, Germany, 2004)

    Google Scholar 

  64. M.S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon fibers based on \({\rm C}_{60}\) and their symmetry. Phys. Rev. B 45(11), 6234–6242 (1992)

    Google Scholar 

  65. P. Delhaés (ed.), Graphite and Precursors (Gordon and Breach Science Publishers, NewYork, 2001)

    Google Scholar 

  66. F. Cirkel, C.M. Branch, Graphite: Its Properties, Occurrence, Refining and Uses (Nabu Press, North Carolina, 2010)

    Google Scholar 

  67. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Google Scholar 

  68. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dais, Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)

    Google Scholar 

  69. M. Terrones, Materials science: nanotubes unzipped. Nature 458, 845–846 (2009)

    Google Scholar 

  70. T.W. Odom, J-L. Huang, P. Kim, C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662), 62–64 (1998)

    Google Scholar 

  71. H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260(3–4), 471–475 (1996)

    Google Scholar 

  72. M. Audier, M. Coulon, Kinetic and microscopic aspects of catalytic carbon growth. Carbon 23(3), 317–323 (1985)

    Google Scholar 

  73. C.N.R. Rao, R. Voggu, A. Govindaraj, Selective generation of single-walled carbon nanotubes with metallic, semiconducting and other unique electronic properties. Nanoscale 1(1), 96–105 (2009)

    Google Scholar 

  74. C. Kane, L. Balents, M.P.A. Fisher, Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79, 5086–5089 (1997)

    Google Scholar 

  75. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60(18), 2204–2206 (1992)

    Google Scholar 

  76. J.W.G. Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998)

    Google Scholar 

  77. S. Hong, S. Myung, Nanotube electronics: a flexible approach to mobility. Nat. Nanotechnol. 2, 207–208 (2007)

    Google Scholar 

  78. J. Han, in Carbon Nanotubes: science and applications, ed. by M. Meyyappan. Structure and Properties of Carbon Nanotubes (CRC Press, Boca Raton, 2004)

    Google Scholar 

  79. J.H. Hafner, M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith, R.E. Smalley, Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296(1–2), 195–202 (1998)

    Google Scholar 

  80. G.Y. Xiong, Y. Suda, D.Z. Wang, J.Y. Huang, Z.F. Ren, Effect of temperature, pressure, and gas ratio of methane to hydrogen on the synthesis of double-walled carbon nanotubes by chemical vapour deposition. Nanotechnology 16(4), 532–535 (2005)

    Google Scholar 

  81. O.M. Dunens, K.J. MacKenzie, A.T. Harris, Large-scale synthesis of double-walled carbon nanotubes in fluidized beds. Ind. Eng. Chem. Res. 49(9), 4031–4035 (2010)

    Google Scholar 

  82. E. Flahaut, R. Bacsa, A. Peigney, C. Laurent, Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem. Commun. 2003(12), 1442–1443 (2003)

    Google Scholar 

  83. R. Bacon, Growth, structure, and properties of graphite whiskers. J. Appl. Phys. 31(2), 283–290 (1960)

    Google Scholar 

  84. H. Cui, X. Yang, M.L. Simpson, D.H. Lowndes, M. Varela, Initial growth of vertically aligned carbon nanofibers. Appl. Phys. Lett 84(20), 4077–4079 (2004)

    Google Scholar 

  85. W. Li, J. Wen, Y. Tu, Z. Ren, Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A 73(2), 259–264 (2001)

    Google Scholar 

  86. W. Wang, B. Poudel, D.Z. Wang, Z.F. Ren, Synthesis of multiwalled carbon nanotubes through a modified Wolff-Kishner reduction process. J. Am. Chem. Soc. 127(51), 18018–18019 (2005)

    Google Scholar 

  87. W. Li, J. Wen, Z. Ren, Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A 74(3), 397–402 (2002)

    Google Scholar 

  88. Y. Ominami, Q. Ngo, A.J. Austin, H. Yoong, C.Y. Yang, A.M. Cassell, B.A. Cruden, J. Li, M. Meyyappan, Structural characteristics of carbon nanofibers for on-chip interconnect applications. Appl. Phys. Lett. 87(23), 233105 (2005)

    Google Scholar 

  89. P.L. McEuen, Nanotechnology: carbon-based electronics. Nature 393(6680), 15–17 (1998)

    Google Scholar 

  90. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Tunneling conductance of connected carbon nanotubes. Phys. Rev. B 53(4), 2044–2050 (1996)

    Google Scholar 

  91. L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Pure carbon nanoscale devices: nanotube heterojunctions. Phys. Rev. Lett. 76(6), 971–974 (1996)

    Google Scholar 

  92. Z. Yao, H.W.C. Postma, L. Balents, C. Dekker, Carbon nanotube intramolecular junctions. Nature 402(6759), 273–276 (1999)

    Google Scholar 

  93. Y. Yao, Q. Li, J. Zhang, R. Liu, L. Jiao, Y.T. Zhu, Z. Liu, Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nat. Mater. 6(4), 283–286 (2007)

    Google Scholar 

  94. M.S. Fuhrer, J. Nygård, L. Shih, M. Forero, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen, Crossed nanotube junctions. Science 288(5465), 494–497 (2000)

    Google Scholar 

  95. P.R. Bandaru, Electrical characterization of carbon nanotube Y-junctions: a foundation for new nanoelectronics. J. Mater. Sci. 42(5), 1809–1818 (2007)

    Google Scholar 

  96. P. Nagy, R. Ehlich, L. Biró, J. Gyulai, Y-branching of single walled carbon nanotubes. Appl. Phys. A 70(4), 481–483 (2000)

    Google Scholar 

  97. S. Itoh, S. Ihara, J.-I. Kitakami, Toroidal form of carbon \({\rm C}_{360}\). Phys. Rev. B 47(3), 1703–1704 (1993)

    Google Scholar 

  98. S. Ihara, S. Itoh, J.-I. Kitakami, Toroidal forms of graphitic carbon. Phys. Rev. B 47, 12908–12911 (1993)

    Google Scholar 

  99. B.I. Dunlap, Connecting carbon tubules. Phys. Rev. B 46(3), 1933–1936 (1992)

    Google Scholar 

  100. B.I. Dunlap, Relating carbon tubules. Phys. Rev. B 49(8), 5643–5651 (1994)

    Google Scholar 

  101. A. Fonseca, K. Hernadi, J. Nagy, P. Lambin, A. Lucas, Growth mechanism of coiled carbon nanotubes. Synth. Met. 77(1–3), 235–242 (1996)

    Google Scholar 

  102. M. Sano, A. Kamino, J. Okamura, S. Shinkai, Ring closure of carbon nanotubes. Science 293(5533), 1299–1301 (2001)

    Google Scholar 

  103. J. Liu, H. Dai, J.H. Hafner, D.T. Colbert, R.E. Smalley, S.J. Tans, C. Dekker, Fullerene ‘crop circles’. Nature 385, 780–781 (1997)

    Google Scholar 

  104. R. Martel, H.R. Shea, P. Avouris, Rings of single-walled carbon nanotubes. Nature 398, 299 (1999)

    Google Scholar 

  105. M-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)

    Google Scholar 

  106. H.R. Shea, R. Martel, P. Avouris, Electrical transport in rings of single-wall nanotubes: one-dimensional localization. Phys. Rev. Lett. 84(19), 4441–4444 (2000)

    Google Scholar 

  107. L. Ci, B. Wei, C. Xu, J. Liang, D. Wu, S. Xie, W. Zhou, Y. Li, Z. Liu, D. Tang, Crystallization behavior of the amorphous carbon nanotubes preparedby the CVD method. J. Cryst. Growth 233, 823–828 (2001)

    Google Scholar 

  108. H. Nishino, R. Nishida, T. Matsui, N. Kawase, I. Mochida, Growth of amorphous carbon nanotube from poly(tetrafluoroethylene) and ferrous chloride. Carbon 41(14), 2819–2823 (2003)

    Google Scholar 

  109. T. Luo, L. Chen, K. Bao, W. Yu, Y. Qian, Solvothermal preparation of amorphous carbon nanotubes and Fe/C coaxial nanocables from sulfur, ferrocene, and benzene. Carbon 44(13), 2844–2848 (2006)

    Google Scholar 

  110. J. Li, C. Papadopoulos, J.M. Xu, M. Moskovits, Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett. 75(3), 367–369 (1999)

    Google Scholar 

  111. Y.F. Hu, X.L. Liang, Q. Chen, L-M. Peng, Z.D. Hu, Electrical characteristics of amorphous carbon nanotube and effects of contacts. Appl. Phys. Lett. 88(6), 063113 (2006)

    Google Scholar 

  112. W.Y. Jang, N.N. Kulkarni, C.K. Shih, Z. Yao, Electrical characterization of individual carbon nanotubes grown in nanoporous anodic alumina templates. Appl. Phys. Lett. 84(7), 1177–1179 (2004)

    Google Scholar 

  113. M. Terrones, Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res. 33, 419–501 (2003)

    Google Scholar 

  114. N. Grobert, M. Terrones, S. Trasobares, K. Kordatos, H. Terrones, J. Olivares, J. Zhang, P. Redlich, W. Hsu, C. Reeves, D. Wallis, Y. Zhu, J. Hare, A. Pidduck, H. Kroto, D. Walton, A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates. Appl. Phys. A: Mater. 70(2), 175–183 (2000)

    Google Scholar 

  115. S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265(5172), 635–639 (1994)

    Google Scholar 

  116. H. Hou, Z. Jun, F. Weller, A. Greiner, Large-scale synthesis and characterization of helically coiled carbon nanotubes by use of \(\text{Fe(CO)}_5\) as floating catalyst precursor. Chem. Mater. 15(16), 3170–3175 (2003)

    Google Scholar 

  117. K. Lau, C. Gu, D. Hui, A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos. Part B Eng. 37(6), 425–36 (2006)

    Google Scholar 

  118. M.J. Hanus, A.T. Harris, Synthesis, characterisation and applications of coiled carbon nanotubes. J. Nanosci. Nanotechnol. 10(4), 2261–2283 (2010)

    Google Scholar 

  119. R.S. Ruoff, J. Tersoff, D.C. Lorents, S. Subramoney, B. Chan, Radial deformation of carbon nanotubes by van der Waals forces. Nature 364, 514–516 (1993)

    Google Scholar 

  120. N.G. Chopra, L.X. Benedict, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Fully collapsed carbon nanotubes. Nature 377(6545), 135–138 (1995)

    Google Scholar 

  121. L.X. Benedict, N.G. Chopra, M.L. Cohen, A. Zettl, S.G. Louie, V.H. Crespi, Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 286(5–6), 490–496 (1998)

    Google Scholar 

  122. S. Liu, J. Yue, R.J. Wehmschulte, Large thick flattened carbon nanotubes. Nano Lett. 2(12), 1439–1442 (2002)

    Google Scholar 

  123. W.Z. Li, X. Yan, K. Kempa, Z.F. Ren, M. Giersig, Structure of flattened carbon nanotubes. Carbon 45(15), 2938–2945 (2007)

    Google Scholar 

  124. B.W. Smith, M. Monthioux, D.E. Luzzi, Encapsulated \({\rm C}_{60}\) in carbon nanotubes. Nature 396(6709), 323–324 (1998)

    Google Scholar 

  125. K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, S. Iijima, One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 85(25), 5384–5387 (2000)

    Google Scholar 

  126. K. Suenaga, M. Tencé, C. Mory, C. Colliex, H. Kato, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima, Element-selective single atom imaging. Science 290(5500), 2280–2282 (2000)

    Google Scholar 

  127. K. Suenaga, R. Taniguchi, T. Shimada, T. Okazaki, H. Shinohara, S. Iijima, Evidence for the intramolecular motion of Gd atoms in a \(\text{Gd}_2\) \(\text{C}_{92}\) nanopeapod. Nano Lett. 3(10), 1395–1398 (2003)

    Google Scholar 

  128. R. Li, X. Sun, X. Zhou, M. Cai, X. Sun, Aligned heterostructures of single-crystalline tin nanowires encapsulated in amorphous carbon nanotubes. J. Phys. Chem. C 111(26), 9130–9135 (2007)

    Google Scholar 

  129. Y. Gao, Y. Bando, Carbon nanothermometer containing gallium. Nature 415, 599 (2002)

    Google Scholar 

  130. Y. Gogotsi, J.A. Libera, M. Yoshimura, Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res. 15(12), 2591–2594 (2000)

    Google Scholar 

  131. D. Mattia, Y. Gogotsi, Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluid. Nanofluid. 5(3), 289–305 (2008)

    Google Scholar 

  132. S.B. Chikkannanavar, B.W. Smith, D.E. Luzzi, in Carbon Nanotubes Properties and Applications, ed. by M.J.O’Connell. Carbon Nanotube Peapod Materials (CRC Press, Taylor& Francis, Boca Raton, 2006)

    Google Scholar 

  133. R. Kitaura, H. Shinohara, Carbon-nanotube-based hybrid materials: nanopeapods. Chem. Asian J. 1(5), 646–655 (2006)

    Google Scholar 

  134. M. Monthioux, Filling single-wall carbon nanotubes. Carbon 40(10), 1809–1823 (2002)

    Google Scholar 

  135. E. González Noya, D. Srivastava, L.A. Chernozatonskii, M. Menon, Thermal conductivity of carbon nanotube peapods. Phys. Rev. B 70(11), 115416 (2004)

    Google Scholar 

  136. G.G. Tibbetts, Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes. Appl. Phys. Lett. 42(8), 666–668 (1983)

    Google Scholar 

  137. M. Inagaki, New Carbon: control of structure and functions. (Elsevier Science, Amsterdam, 2000)

    Google Scholar 

  138. S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003)

    Google Scholar 

  139. A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97(4), 041301/1–041301/39 (2005)

    Google Scholar 

  140. M. Tanemura, T. Okita, J. Tanaka, M. Kitazawa, K. Itoh, L. Miao, S. Tanemura, S.P. Lau, H.Y. Yang, L. Huang, Room-temperabutre growth and applications of carbon nanofibers: a review. IEEE Trans. Nanotechnol. 5(5), 587–594 (2006)

    Google Scholar 

  141. S. Iijima, Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J. Cryst. Growth 50(3), 675–683 (1980)

    Google Scholar 

  142. N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G.A.J. Amaratunga, Synthesis of carbon ‘onions’ in water. Nature 414, 506–507 (2001)

    Google Scholar 

  143. D. Ugarte, Curling and closure of graphitic networks udner electron-beam irradiation. Nature 359, 707 (1992)

    Google Scholar 

  144. D. Ugarte, Formation mechanism of quasi-spherical carbon particles induced by electron bombardment. Chem. Phys. Lett. 207, 473 (1993)

    Google Scholar 

  145. M. Ge, K. Dattler, Observation of fullerene cones. Chem. Phys. Lett. 220, 192 (1994)

    Google Scholar 

  146. A. Krishman, E. Dujardin, M.M.J. Treacy, J. Jugdahl, S. Lynum, T.W. Ebbesen, Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451 (1997)

    Google Scholar 

  147. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, K. Takahashi, Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309(3–4), 165–170 (1999)

    Google Scholar 

  148. S.G. Louie, in Carbon Nanotubes: synthesis, structure, properties, and applications, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Electronic Properties, Junctions, and Defects of Carbon Nanotubes, Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001) pp. 113–146

    Google Scholar 

  149. Z. Yao, C. Dekker, P. Avouris, in Carbon Nanotubes: synthesis, structure, properties, and applications, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Electronic Transport Through Single-Wall Carbon Nanotubes, Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001) pp. 147–172

    Google Scholar 

  150. L. Forró, C. Schönenberger, in Carbon Nanotubes: synthesis, structure, properties, and applications, ed by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Physical Properties of Multi-Wall Nanotubes, Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001) pp. 329–390

    Google Scholar 

  151. J. Bernholc, D. Brenner, M.B. Nardelli, V. Meunier, C. Roland, Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res. 32, 347–375 (2002)

    Google Scholar 

  152. V.N. Popov, Carbon nanotubes: properties and application. Mat. Sci. Eng. R Rep. 43(3), 61–102 (2004)

    Google Scholar 

  153. M. Dresselhaus, G. Dresselhaus, A. Jorio, Unusual properties and structure of carbon nanotubes. Annu. Rev. Mater. Res. 34(1), 247–278 (2004)

    Google Scholar 

  154. M. Burghard, Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surf. Sci. Rep. 58(1–4), 1–109 (2005)

    Google Scholar 

  155. P. Avouris, J. Chen, Nanotube electronics and optoelectronics. Mater. Today 9, 46–54 (2006)

    Google Scholar 

  156. P. Avouris, Z.H. Chen, V. Perebeinos, Carbon-based electronics. Nat. Nanotechnol. 2, 605–615 (2007)

    Google Scholar 

  157. P. Avouris, M. Freitag, V. Perebeinos, Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2(6), 341–350 (2008)

    Google Scholar 

  158. C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath, Nanotubes. Chem. Phys. Chem. 2, 78–105 (2001)

    Google Scholar 

  159. M.S. Dresselhaus, P.C. Eklund, Phonons in carbon nanotubes. Adv. Phys. 49(6), 705–814 (2000)

    Google Scholar 

  160. R. Saito, H. Kataura, in Carbon Nanotubes: synthesis, structure, properties, and applications, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Optical Properties and Raman Spectroscopy of Carbon Nanotubes, Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001) pp. 213–246

    Google Scholar 

  161. H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500(1–3), 218–241 (2002)

    Google Scholar 

  162. M. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005)

    Google Scholar 

  163. J.J. Zhao, X.S. Chen, J.R.H. Xie, Optical properties and photonic devices of doped carbon nanotubes. Anal. Chim. Acta 568(1–2), 161–170 (2006)

    Google Scholar 

  164. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Exciton photophysics of carbon nanotubes. Annu. Rev. Phys. Chem. 58, 719–747 (2007)

    Google Scholar 

  165. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10(3), 751–758 (2010)

    Google Scholar 

  166. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60(3), 413–550 (2011)

    Google Scholar 

  167. M. Biercuk, S. Ilani, C. Marcus, P. McEuen, in Carbon Nanotubes: advanced topics in the synthesis, structure, properties and applications, ed by A. Jorio, G. Dresselhaus, M.S. Dresselhaus. Electrical Transport in Single-Wall-Carbon-Nanotubes, Topics in Applied Physics, vol. 111 (Springer, Heidelberg, 2008) pp. 455–493

    Google Scholar 

  168. J. Hone, in Carbon Nanotubes: synthesis, structure, properties, and applications, ed by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Phonons and Thermal Properties of Carbon Nanotubes, Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001) pp. 273–286

    Google Scholar 

  169. Y. Lan, Y. Wang, Z.F. Ren, Physics and applications of aligned carbon nanotubes. Adv. Phys. 60(4), 553–678 (2011)

    Google Scholar 

  170. B.I. Yakobson, P. Avouris, in Carbon Nanotubes: synthesis, structure, properties, and applications, ed by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Mechanical Properties of Carbon Nanotubes, Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001) pp. 287–328

    Google Scholar 

  171. J. Kono, S. Roche, in Carbon Nanotubes Properties and Applications, ed by M.J. O’Connell. Magnetic Properties (CRC Press/Taylor & Francis, Boca Raton/FL, 2006) pp. 119–152

    Google Scholar 

  172. S.K. Doorn, D. Heller, M. Usrey, P. Barone, M.S. Strano, in Carbon Nanotubes Properties and Applications, ed by M.J. O’Connell. Raman Spectroscopy of Single-Walled Carbon Nanotubes: probing electronic and chemical behavior (CRC Press/Taylor & Francis, Boca Raton/FL, 2006) pp. 153–186

    Google Scholar 

  173. R.F. Gibson, E.O. Ayorinde, Y.F. Wen, Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67(1), 1–28 (2007)

    Google Scholar 

  174. S. Kilina, S. Tretiak, Excitonic and vibrational properties of single-walled semiconducting carbon nanotubes. Adv. Funct. Mater. 17(17), 3405–3420 (2007)

    Google Scholar 

  175. M. Daenen, R.D. de Fouw, B. Hamers, P.G.A. Janssen, K. Schouteden, M.A.J. Veld, The wondrous world of carbon nanotubes: a review of current carbon nanotube technologies. Technical report, Eindhoven University of Technology, 2003

    Google Scholar 

  176. P. Bernier, D. Carroll, G. Kim, S. Roth (eds.), Nanotube-Based Devices, Materials Research Society Symposium Proceedings. Materials Research Society, vol. 772 (2003)

    Google Scholar 

  177. C.P. Collier, in Carbon Nanotubes Properties and Applications, ed by M.J. O’Connell. Carbon Nanotube Tips for Scanning Probe Microscopy, (CRC Press/Taylor & Francis, Boca Raton/FL, 2006) pp. 295–309

    Google Scholar 

  178. P.R. Bandaru, Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol. 7(4–5), 1239–1267 (2007)

    Google Scholar 

  179. H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Direct synthesis of long single-walled carbon nanotube strands. Science 296(5569), 884–886 (2002)

    Google Scholar 

  180. Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian, Very long carbon nanotubes. Nature 394(6694), 631–632 (1998)

    Google Scholar 

  181. M.B. Jakubinek, M.A. White, G. Li, C. Jayasinghe, W. Cho, M.J. Schulz, V. Shanov, Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays. Carbon 48(13), 3947–3952 (2010)

    Google Scholar 

  182. J. Hone, M.C. Llaguno, N.M. Nemes, A.T. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley, Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 77(5), 666–668 (2000)

    Google Scholar 

  183. J.E. Fischer, W. Zhou, J. Vavro, M.C. Llaguno, C. Guthy, R. Haggenmueller, M.J. Casavant, D.E. Walters, R.E. Smalley, Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties. J. Appl. Phys. 93(4), 2157–2163 (2003)

    Google Scholar 

  184. Q. Wang, J. Dai, W. Li, Z. Wei, J. Jiang, The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos. Sci. Technol. 68(7–8), 1644–1648 (2008)

    Google Scholar 

  185. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96–100 (2006)

    Google Scholar 

  186. S. Berber, Y.-K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613–4616 (2000)

    Google Scholar 

  187. W. Yi, L. Lu, D.-l. Zhang, Z. W. Pan, S. S. Xie, Linear specific heat of carbon nanotubes. Phys. Rev. B 59(14), R9015–R9018 (1999)

    Google Scholar 

  188. D.J. Yang, Q. Zhang, G. Chen, S.F. Yoon, J. Ahn, S.G. Wang, Q. Zhou, Q. Wang, J.Q. Li, Thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B 66(16), 165440 (2002)

    Google Scholar 

  189. X. Wang, Z. Zhong, J. Xu, Noncontact thermal characterization of multiwall carbon nanotubes. J. Appl. Phys. 97(6), 064302 (2005)

    Google Scholar 

  190. T. Borca-Tasciuc, S. Vafaei, D.-A. Borca-Tasciuc, B.Q. Wei, R. Vajtai, P.M. Ajayan, Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays. J. Appl. Phys. 98(5), 054309 (2005)

    Google Scholar 

  191. O. Chauvet, L. Forro, W. Bacsa, D. Ugarte, B. Doudin, W.A. de Heer, Magnetic anisotropies of aligned carbon nnaotubes. Phys. Rev. B 52, R6963 (1995)

    Google Scholar 

  192. J.P. Lu, Novel magnetic properties of carbon nanotubes. Phys. Rev. Lett. 74(7), 1123–1126 (1995)

    Google Scholar 

  193. X.K. Wang, R.P.H. Chang, A. Patashinski, J.B. Ketterson, Magnetic susceptibility of buckytubes. J. Mater. Res. 9(6), 1578–1582 (1994)

    Google Scholar 

  194. A.P. Ramirez, R.C. Haddon, O. Zhou, R.M. Fleming, J. Zhang, S.M. McClure, R.E. Smalley, Magnetic susceptibility of molecular carbon: Nanotubes and fullerite. Science 265(5168), 84–86 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, Z., Lan, Y., Wang, Y. (2012). Carbon Nanotubes. In: Aligned Carbon Nanotubes. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30490-3_2

Download citation

Publish with us

Policies and ethics