Skip to main content

Basic Navigational Mathematics, Reference Frames and the Earth’s Geometry

  • Chapter
  • First Online:
Book cover Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration

Abstract

Navigation algorithms involve various coordinate frames and the transformation of coordinates between them. For example, inertial sensors measure motion with respect to an inertial frame which is resolved in the host platform’s body frame. This information is further transformed to a navigation frame. A GPS receiver initially estimates the position and velocity of the satellite in an inertial orbital frame. Since the user wants the navigational information with respect to the Earth, the satellite’s position and velocity are transformed to an appropriate Earth-fixed frame. Since measured quantities are required to be transformed between various reference frames during the solution of navigation equations, it is important to know about the reference frames and the transformation of coordinates between them. But first we will review some of the basic mathematical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking this definition does not satisfy the requirement defined earlier for an inertial frame because, in accordance with Kepler’s second law of planetary motion, the Earth does not orbit around the sun at a fixed speed; however, for short periods of time it is satisfactory.

  2. 2.

    The vernal equinox is the direction of intersection of the equatorial plane of the Earth with the ecliptic (the plane of Earth’s orbit around the sun).

References

  • Chatfield AB (1997) Fundamentals of high accuracy inertial navigation. American Institute of Aeronautics and Astronautics, Reston

    Google Scholar 

  • Farrell JA (1998) The global positioning system and inertial navigation. McGraw-Hill, New York

    Google Scholar 

  • Farrell JA (2008) Aided navigation : GPS with high rate sensors. McGraw-Hill, New York

    Google Scholar 

  • Grewal MS, Weill LR, Andrews AP (2007) Global positioning systems, inertial navigation, and integration, 2nd edn. Wiley, New York

    Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS-global navigation satellite systems : GPS, GLONASS, Galileo, and more. Springer, New York

    Google Scholar 

  • Rogers RM (2007) Applied mathematics in integrated navigation systems, 3rd edn. American Institute of Aeronautics and Astronautics, Reston

    Google Scholar 

  • Schwarz KP, Wei M (Jan 1999) ENGO 623: Partial lecture on INS/GPS integration for geodetic applications University of Calgary, Department of Geomatics Engineering

    Google Scholar 

  • Titterton D, Weston J (2005) Strapdown inertial navigation technology IEE radar, sonar, navigation and avionics series, 2nd edn. AIAA

    Google Scholar 

  • Torge W (1980) Geodesy: an introduction. De Gruyter, Berlin

    Google Scholar 

  • Vanícek P, Krakiwsky EJ (1986) Geodesy, the concepts. North Holland; Sole distributors for the U.S.A. and Canada. Elsevier Science Pub. Co., Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tashfeen B. Karamat .

Appendices

Appendix A

2.1.1 Derivation of Meridian Radius and Normal Radius

For Earth ellipsoids, every meridian is an ellipse with equatorial radius \( a \) (called the semimajor axis) and polar radius \( b \) (called the semiminor axis). Figure 2.16 shows a meridian cross section of one such ellipse (Rogers 2007).

Fig. 2.16
figure 16

A meridian cross section of the reference ellipsoid containing the projection of the point of interest P

This ellipse can be described by the equation

$$ \frac{{w^{2} }}{{a^{2} }} + \frac{{z^{2} }}{{b^{2} }} = 1 $$
(2.124)

and the slope of the tangent to point \( P \) can be derived by differentiation

$$ \frac{2wdw}{{a^{2} }} + \frac{2zdz}{{b^{2} }} = 0 $$
(2.125)
$$ \frac{dz}{dw} = - \frac{{b^{2} w}}{{a^{2} z}} $$
(2.126)

An inspection of the Fig. 2.16 shows that the derivative of the curve at point P, which is equal to the slope of the tangent to the curve at that point, is

$$ \frac{dz}{dw} = \tan \left( {\frac{\pi }{2} + \varphi } \right) $$
(2.127)
$$ \frac{dz}{dw} = \frac{{\sin \left( {\frac{\pi }{2} + \varphi } \right)}}{{\cos \left( {\frac{\pi }{2} + \varphi } \right)}} = \frac{\cos \varphi }{ - \sin \varphi } = - \frac{1}{\tan \varphi } $$
(2.128)

Therefore

$$ \frac{1}{\tan \varphi } = \frac{{b^{2} w}}{{a^{2} z}} $$
(2.129)

From the definition of eccentricity, we have

$$ \begin{aligned} & e^{2} = 1 - \frac{{b^{2} }}{{a^{2} }} \\ & \frac{{b^{2} }}{{a^{2} }} = 1 - e^{2} \\ \end{aligned} $$
(2.130)

and Eq. (2.129) becomes

$$ z = w\left( {1 - e^{2} } \right)\tan \varphi $$
(2.131)

The ellipse described by Eq. (2.124) gives

$$ w^{2} = a^{2} \left( {1 - \frac{{z^{2} }}{{b^{2} }}} \right) $$
(2.132)

Substituting the value of \( z \) from Eq. (2.131) yields

$$ \begin{aligned} & w^{2} = \left( {a^{2} - \frac{{a^{2} w^{2} \left( {1 - e^{2} } \right)^{2} \tan^{2} \varphi }}{{b^{2} }}} \right) \\ & w^{2} + \frac{{a^{2} w^{2} \left( {1 - e^{2} } \right)^{2} \tan^{2} \varphi }}{{b^{2} }} = a^{2} \\ & w^{2} \left( {\frac{{b^{2} + a^{2} \left( {1 - e^{2} } \right)^{2} \tan^{2} \varphi }}{{b^{2} }}} \right) = a^{2} \\ \end{aligned} $$
$$ \begin{aligned} & w^{2} = \frac{{a^{2} b^{2} }}{{b^{2} + a^{2} \left( {1 - e^{2} } \right)^{2} \tan^{2} \varphi }} \\ & w^{2} = \frac{{a^{2} \left[ {a^{2} \left( {1 - e^{2} } \right)} \right]}}{{a^{2} \left( {1 - e^{2} } \right) + a^{2} \left( {1 - e^{2} } \right)^{2} \tan^{2} \varphi }} \\ & w^{2} = \frac{{a^{2} }}{{1 + \left( {1 - e^{2} } \right)\tan^{2} \varphi }} \\ & w^{2} = \frac{{a^{2} }}{{1 + \left( {1 - e^{2} } \right)\frac{{\sin^{2} \varphi }}{{\cos^{2} \varphi }}}} \\ & w^{2} = \frac{{a^{2} \cos^{2} \varphi }}{{\cos^{2} \varphi + \left( {1 - e^{2} } \right)\sin^{2} \varphi }} \\ & w^{2} = \frac{{a^{2} \cos^{2} \varphi }}{{1 - e^{2} \sin^{2} \varphi }} \\ \end{aligned} $$
(2.133)
$$ w = \frac{a\cos \varphi }{{\left( {1 - e^{2} \sin^{2} \varphi } \right)^{\frac{1}{2}} }} $$
(2.134)

Substituting this expression for w in Eq. (2.131) produces

$$ z = \frac{{a\left( {1 - e^{2} } \right)\sin \varphi }}{{\left( {1 - e^{2} \sin^{2} \varphi } \right)^{{^{\frac{1}{2}} }} }} $$
(2.135)

which will be used later to derive the meridian radius.

It can easily be proved from Fig. 2.16 that

$$ w = R_{N} \cos \varphi $$
(2.136)

From this and Eq. (2.134) we have the expression for the normal radius, \( R_{N} , \) also known as the radius of curvature in the prime vertical

$$ R_{N} = \frac{a}{{\left( {1 - e^{2} \sin^{2} \varphi } \right)^{{^{\frac{1}{2}} }} }} $$
(2.137)

The radius of curvature of an arc of constant longitude is

$$ R_{M} = \frac{{\left[ {1 + \left( \frac{dz}{dw} \right)^{2} } \right]}}{{ \pm \frac{{d^{2} z}}{{dw^{2} }}}}^{\frac{3}{2}} $$
(2.138)

The second derivative of Eq. (2.126) provides

$$ \begin{aligned} & \frac{dz}{dw} = - \frac{{b^{2} w}}{{a^{2} z}} = - \frac{{b^{2} w}}{{a^{2} }}\left( {b^{2} - \frac{{b^{2} w^{2} }}{{a^{2} }}} \right)^{ - 1/2} \\ & \frac{{d^{2} z}}{{dw^{2} }} = - \frac{{b^{2} }}{{a^{2} }}\left( {b^{2} - \frac{{b^{2} w^{2} }}{{a^{2} }}} \right)^{ - 1/2} - \frac{{b^{2} w}}{{a^{2} }}\left( { - \frac{1}{2}} \right)\left( {b^{2} - \frac{{b^{2} w^{2} }}{{a^{2} }}} \right)^{ - 3/2} \left( { - \frac{{b^{2} }}{{a^{2} }}} \right)2w \\ & \frac{{d^{2} z}}{{dw^{2} }} = - \frac{{b^{2} }}{{a^{2} z}} - \frac{{b^{4} w^{2} }}{{a^{4} z^{3} }} \\ & \frac{{d^{2} z}}{{dw^{2} }} = \frac{{ - b^{2} a^{2} z^{2} - b^{4} w^{2} }}{{a^{4} z^{3} }} = \frac{{ - b^{2} a^{2} \left( {b^{2} - \frac{{b^{2} w^{2} }}{{a^{2} }}} \right) - b^{4} w^{2} }}{{a^{4} z^{3} }} \\ & \frac{{d^{2} z}}{{dw^{2} }} = \frac{{ - b^{4} a^{2} + b^{4} w^{2} - b^{4} w^{2} }}{{a^{4} z^{3} }} \\ \end{aligned} $$

which simplifies to

$$ \frac{{d^{2} z}}{{dw^{2} }} = - \frac{{b^{4} }}{{a^{2} z^{3} }} $$
(2.139)

Substituting Eqs. (2.139) and (2.126) into (2.138) yields

$$ R_{M} = \frac{{\left[ {1 + \frac{{b^{4} w^{2} }}{{a^{4} z^{2} }}} \right]}}{{\frac{{b^{4} }}{{a^{2} z^{3} }}}}^{\frac{3}{2}} $$
(2.140)

and since \( \frac{{b^{2} }}{{a^{2} }} = 1\,-\,e^{2} \)

$$ \begin{aligned} & R_{M} = \frac{{\left[ {1 + \frac{{\left( {1\,-\,e^{2} } \right)^{2} w^{2} }}{{z^{2} }}} \right]}}{{\frac{{b^{2} \left( {1\,-\,e^{2} } \right)}}{{z^{3} }}}}^{\frac{3}{2}} \\ & R_{M} = \frac{{\left[ {\frac{{z^{2} + \left( {1\,-\,e^{2} } \right)^{2} w^{2} }}{{z^{2} }}} \right]}}{{\frac{{b^{2} \left( {1\,-\,e^{2} } \right)}}{{z^{3} }}}}^{\frac{3}{2}} \\ \end{aligned} $$
$$ R_{M} = \frac{{\left[ {z^{2} + \left( {1\,-\,e^{2} } \right)^{2} w^{2} } \right]}}{{b^{2} \left( {1\,-\,e^{2} } \right)}}^{\frac{3}{2}} $$
(2.141)

Substituting the value of \( w \) from Eq. (2.134) and \( z \) from (2.135) gives

$$ \begin{aligned} & R_{M} = \frac{{\left[ {\frac{{a^{2} \left( {1\,-\,e^{2} } \right)^{2} \sin^{2} \varphi }}{{1\,-\,e^{2} \sin^{2} \varphi }} + \left( {1\,-\,e^{2} } \right)^{2} \frac{{a^{2} \cos^{2} \varphi }}{{1\,-\,e^{2} \sin^{2} \varphi }}} \right]}}{{b^{2} \left( {1\,-\,e^{2} } \right)}}^{\frac{3}{2}} \\ & R_{M} = \frac{{\left[ {\frac{{a^{2} \left( {1\,-\,e^{2} } \right)^{2} \sin^{2} \varphi + \left( {1\,-\,e^{2} } \right)^{2} a^{2} \cos^{2} \varphi }}{{1\,-\,e^{2} \sin^{2} \varphi }}} \right]}}{{b^{2} \left( {1\,-\,e^{2} } \right)}}^{\frac{3}{2}} \\ & R_{M} = \frac{{\left[ {a^{2} \left( {1\,-\,e^{2} } \right)^{2} \left( {\sin^{2} \varphi + \cos^{2} \varphi } \right)} \right]}}{{b^{2} \left( {1\,-\,e^{2} } \right)\left( {1\,-\,e^{2} \sin^{2} \varphi } \right)^{\frac{3}{2}} }}^{\frac{3}{2}} \\ & R_{M} = \frac{{a^{3} \left( {1\,-\,e^{2} } \right)^{3} }}{{b^{2} \left( {1\,-\,e^{2} } \right)\left( {1\,-\,e^{2} \sin^{2} \varphi } \right)^{\frac{3}{2}} }} \\ & R_{M} = \frac{{a\left( {1\,-\,e^{2} } \right)^{3} }}{{\left( {1\,-\,e^{2} } \right)\left( {1\,-\,e^{2} } \right)\left( {1\,-\,e^{2} \sin^{2} \varphi } \right)^{\frac{3}{2}} }} \\ \end{aligned} $$

leading to the meridian radius of curvature

$$ R_{M} = \frac{{a\left( {1 - e^{2} } \right)}}{{\left( {1 - e^{2} \sin^{2} \varphi } \right)^{\frac{3}{2}} }} $$
(2.142)

Appendix B

2.2.1 Derivation of the Conversion Equations From Geodetic to Rectangular Coordinates in the ECEF Frame

Figure 2.17 shows the relationship between geodetic and rectangular coordinates in the ECEF frame.

Fig. 2.17
figure 17

The relationship between geodetic and rectangular coordinates in the ECEF frame

It is evident that

$$ {\mathbf{r}}_{P} = {\mathbf{r}}_{Q} + h{\mathbf{n}} $$
(2.143)

where

$$ {\mathbf{r}}_{Q} = \left[ {\begin{array}{*{20}c} {R_{N} \cos \varphi \cos \lambda } \\ {R_{N} \cos \varphi \sin \lambda } \\ {R_{N} \sin \varphi - R_{N} e^{2} \sin \varphi } \\ \end{array} } \right] = R_{N} \left[ {\begin{array}{*{20}c} {\cos \varphi \cos \lambda } \\ {\cos \varphi \sin \lambda } \\ {\sin \varphi - R_{N} e^{2} \sin \varphi } \\ \end{array} } \right] $$
(2.144)

Also, the unit vector along the ellipsoidal normal is

$$ {\mathbf{n}} = \left[ {\begin{array}{*{20}c} {\cos \varphi \cos \lambda } \\ {\cos \varphi \sin \lambda } \\ {\sin \varphi } \\ \end{array} } \right] $$
(2.145)

Substituting Eqs. (2.144) and (2.145) into (2.143) gives

$$ {\mathbf{r}}_{P} = R_{N} \left[ {\begin{array}{*{20}c} {\cos \varphi \cos \lambda } \\ {\cos \varphi \sin \lambda } \\ {\sin \varphi - R_{N} e^{2} \sin \varphi } \\ \end{array} } \right] + h\left[ {\begin{array}{*{20}c} {\cos \varphi \cos \lambda } \\ {\cos \varphi \sin \lambda } \\ {\sin \varphi } \\ \end{array} } \right] $$
(2.146)
$${\mathbf{r}}_{P} = \left[ {\begin{array}{*{20}l} {\left( {R_{N} + h} \right)\cos \varphi \cos \lambda } \\ {\left( {R_{N} + h} \right)\cos \varphi \sin \lambda } \\ {\left\{ {R_{N} \left( {1 - e^{2} } \right) + h} \right\}\sin \varphi } \\ \end{array} } \right] $$
(2.147)
$$ \left[ \begin{gathered} x^{e} \hfill \\ y^{e} \hfill \\ z^{e} \hfill \\ \end{gathered} \right] = \left[ {\begin{array}{*{20}c} {\left( {R_{N} + h} \right)\cos \varphi \cos \lambda } \\ {\left( {R_{N} + h} \right)\cos \varphi \sin \lambda } \\ {\left\{ {R_{N} \left( {1 - e^{2} } \right) + h} \right\}\sin \varphi } \\ \end{array} } \right] $$
(2.148)

Appendix C

2.3.1 Derivation of Closed Form Equations From Rectangular to Geodetic Coordinates in the ECEF Frame

Here we derive a closed form algorithm which uses a series expansion (Schwarz and Wei Jan 1999) to compute e-frame geodetic coordinates directly from e-frame rectangular coordinates.

From Fig. 2.18a it can is evident that, for given rectangular coordinates, the calculation of geocentric coordinates \( \left( {\lambda ,\varphi^{\prime},r} \right) \) is simply

$$ {\mathbf{r}} = \sqrt {\left( {x^{e} } \right)^{2} + \left( {y^{e} } \right)^{2} + \left( {z^{e} } \right)^{2} } $$
(2.149)
$$ \lambda = \tan^{ - 1} \left( {\frac{{y^{e} }}{{x^{e} }}} \right) $$
(2.150)
$$ \varphi^{\prime} = \sin^{ - 1} \left( {\frac{{z^{e} }}{r}} \right) $$
(2.151)
Fig. 2.18
figure 18

Reference diagram for conversion of rectangular coordinates to geodetic coordinates in the ECEF frame through a closed-form method

From the triangle POC (elaborated in Fig. 2.18b) it is apparent that the difference between the geocentric latitude \( \varphi^{\prime} \) and the geodetic latitude \( \varphi \) is

$$ \begin{aligned} & D + \varphi^{\prime} + \frac{\pi }{2} + \left( {\frac{\pi }{2} - \varphi } \right) = \pi \\ & D + \varphi^{\prime} + \pi - \varphi = \pi \\ & D = \varphi - \varphi^{\prime} \\ \end{aligned} $$
(2.152)

where \( D \) is the angle between the ellipsoidal normal at \( Q \) and the normal to the sphere at \( P. \)

Applying the law of sines to the triangle in Fig. 2.18b provides

$$ \begin{aligned} & \frac{\sin D}{{R_{N} e^{2} \sin \varphi }} = \frac{{\sin \left( {\frac{\pi }{2} - \varphi } \right)}}{r} \\ & \frac{\sin D}{{R_{N} e^{2} \sin \varphi }} = \frac{\cos \varphi }{r} \\ & \sin D = \frac{{R_{N} e^{2} \sin \varphi \cos \varphi }}{r} \\ & D = \sin^{ - 1} \left( {\frac{{R_{N} e^{2} \sin \varphi \cos \varphi }}{r}} \right) \\ \end{aligned} $$
(2.153)
$$ D = \sin^{ - 1} \left( {\frac{{R_{N} e^{2} \frac{1}{2}\sin 2\varphi }}{r}} \right) $$
(2.154)

Substituting the definition of the normal radius \( R_{N} \) given in Eq. (2.137)

$$ R_{N} = \frac{a}{{\left( {1 - e^{2} \sin^{2} \varphi } \right)^{1/2} }} $$
(2.155)

into Eq. (2.154) gives

$$ D = \sin^{ - 1} \left( {\frac{{\frac{a}{{\left( {1 - e^{2} \sin^{2} \varphi } \right)^{1/2} }}e^{2} \frac{1}{2}\sin 2\varphi }}{r}} \right) $$
(2.156)
$$ D = \sin^{ - 1} \left( {\frac{k\sin 2\varphi }{{\left( {1 - e^{2} \sin^{2} \varphi } \right)^{1/2} }}} \right) $$
(2.157)

where

$$ k = \frac{{e^{2} a}}{2} $$
(2.158)

To achieve a first approximation, if \( \varphi = \varphi^{\prime} \) then \( D \) can be computed by using the geocentric latitude

$$ D_{c} = \sin^{ - 1} \left( {\frac{{k\sin 2\varphi^{\prime}}}{{\left( {1 - e^{2} \sin^{2} \varphi^{\prime}} \right)^{1/2} }}} \right) $$
(2.159)

Expanding Eq. (2.157) for this approximation, \( D_{c} , \) gives

$$ D = D\left( {\varphi = \varphi^{\prime}} \right) + \left. {D^{\prime}\left( \varphi \right)} \right|_{{\varphi = \varphi^{\prime}}} \left( {\varphi - \varphi^{\prime}} \right) + \left. {D^{\prime\prime}\left( \varphi \right)} \right|_{{\varphi = \varphi^{\prime}}} \frac{{\left( {\varphi - \varphi^{\prime}} \right)^{2} }}{2!} + \left. {D^{\prime\prime\prime}\left( \varphi \right)} \right|_{{\varphi = \varphi^{\prime}}} \frac{{\left( {\varphi - \varphi^{\prime}} \right)^{3} }}{3!} + \ldots $$
(2.160)
$$ D = D_{c} + D^{\prime}\left( {\varphi^{\prime}} \right)D + \frac{1}{2!}D^{\prime\prime}\left( {\varphi^{\prime}} \right)D^{2} + \frac{1}{3!}D^{\prime\prime\prime}\left( {\varphi^{\prime}} \right)D^{3} + \ldots $$
(2.161)

For a very small value of \( D \) (less than 0.005), it can be assumed that \( R_{N} \simeq r, \) and hence

$$ D = \frac{{e^{2} }}{2}\sin 2\varphi $$
(2.162)

So for this situation, let \( k = \frac{{e^{2} }}{2} \) so that

$$ D = k\sin 2\varphi $$
(2.163)

The series used above can therefore be truncated after the fourth-order term and be considered as a polynomial equation. Solving this polynomial provides

$$ D = \frac{{D_{c} }}{{1 - 2k\cos 2\varphi^{\prime} + 2k^{2} \sin^{2} \varphi^{\prime}}} $$
(2.164)

The geodetic latitude can be given as

$$ \varphi = \varphi^{\prime} + D = \sin^{ - 1} \frac{{z^{e} }}{r} + D $$
(2.165)

The geodetic longitude is the same as shown earlier

$$ \lambda = \tan^{ - 1} \left( {\frac{{y^{e} }}{{x^{e} }}} \right) $$
(2.166)

The ellipsoidal height is calculated from the triangle PRC of Fig. 2.18a

$$ P^{e} = \left( {R_{N} + h} \right)\cos \varphi $$
(2.167)
$$ h = \frac{{P^{e} }}{\cos \varphi } - R_{N} $$
(2.168)
$$ h = \frac{{\sqrt {\left( {x^{e} } \right)^{2} + \left( {y^{e} } \right)^{2} } }}{\cos \varphi } - R_{N} $$
(2.169)

Equations (2.165), (2.166) and (2.169) are therefore closed-form expressions to convert from rectangular coordinates to geodetic coordinates in the e-frame.

Appendix D

2.4.1 Derivation of the Iterative Equations From Rectangular to Geodetic Coordinates in the ECEF Frame

From Eq. (2.148), which relates geodetic and rectangular coordinates in the e-frame, we see that

$$ x^{e} = \left( {R_{N} + h} \right)\cos \varphi \cos \lambda $$
(2.170)
$$ y^{e} = \left( {R_{N} + h} \right)\cos \varphi \sin \lambda $$
(2.171)
$$ z^{e} = \left\{ {R_{N} \left( {1 - e^{2} } \right) + h} \right\}\sin \varphi $$
(2.172)

Given the rectangular coordinates and these equations, the geodetic longitude is

$$ \lambda = \tan^{ - 1} \left( {\frac{{y^{e} }}{{x^{e} }}} \right) $$
(2.173)

Equation (2.169) specifies the relationship for the altitude as

$$ h = \frac{{\sqrt {\left( {x^{e} } \right)^{2} + \left( {y^{e} } \right)^{2} } }}{\cos \varphi } - R_{N} $$
(2.174)

Also, from Eqs. (2.170) and (2.171) it can be shown that

$$ \left( {x^{e} } \right)^{2} + \left( {y^{e} } \right)^{2} = \left( {R_{N} + h} \right)^{2} \cos \varphi^{2} \left[ {\cos^{2} \lambda + \sin^{2} \lambda } \right] $$
(2.175)
$$ \sqrt {\left( {x^{e} } \right)^{2} + \left( {y^{e} } \right)^{2} } = \left( {R_{N} + h} \right)\cos \varphi $$
(2.176)

And finally, dividing Eq. (2.172) by Eq. (2.176) yields

$$ \frac{{z^{e} }}{{\sqrt {\left( {x^{e} } \right)^{2} + \left( {y^{e} } \right)^{2} } }} = \frac{{\left[ {R_{N} \left( {1 - e^{2} } \right) + h} \right]}}{{\left( {R_{N} + h} \right)}}\tan \varphi $$
$$ \varphi = \tan^{ - 1} \left\{ {\frac{{z^{e} \left( {R_{N} + h} \right)}}{{\left[ {R_{N} \left( {1 - e^{2} } \right) + h} \right]\sqrt {\left( {x^{e} } \right)^{2} + \left( {y^{e} } \right)^{2} } }}} \right\} $$
(2.177)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noureldin, ., Karamat, T.B., Georgy, J. (2013). Basic Navigational Mathematics, Reference Frames and the Earth’s Geometry. In: Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30466-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30466-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30465-1

  • Online ISBN: 978-3-642-30466-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics