Skip to main content

Effects of Fractal Pore on Coal Devolatilization

  • Conference paper
  • First Online:
Cleaner Combustion and Sustainable World (ISCC 2011)

Included in the following conference series:

  • 1030 Accesses

Abstract

Coal devolatilization is numerically investigated by drop tube furnace and a coal pyrolysis model (Fragmentation and Diffusion Model). The fractal characteristics of coal and char pores are investigated. Gas diffusion and secondary reactions in fractal pores are considered in the numerical simulations of coal devolatilization, and the results show that the fractal dimension is increased firstly and then decreased later with increased coal conversions during devolatilization. The mechanisms of effects of fractal pores on coal devolatilization are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solomon PR, Hamblen DG, Carangelo RM, Serio MA, Deshpande GV. Energy Fuels. 1988;2:405–22.

    Google Scholar 

  2. Zhao YX, Serio MA, Solomon PR. 26th international symposium (international) on combustion. Napoli: The Combustion Institute; 1996. p. 3145.

    Google Scholar 

  3. Niksa S, Kerstein AR. Energy Fuels. 1991;5:647–65.

    Article  Google Scholar 

  4. Niksa S. Energy Fuels. 1991;5:665–73.

    Article  Google Scholar 

  5. Niksa S. Energy Fuels. 1991;5:673–83.

    Article  Google Scholar 

  6. Niksa S. Combust Flame. 1995;100:384–94.

    Article  Google Scholar 

  7. Genetti DB. An advanced model of coal devolatilization based on chemical structure. Ms.D. thesis, Brigham Young University, 1999.

    Google Scholar 

  8. Grant DM, Pugmire RJ, Fletcher TH, Kerstein AR. Energy Fuels. 1989;3:175–86.

    Article  Google Scholar 

  9. Jupudi RS, Zamansky V, Fletcher TH. Energy Fuels. 2009;23:3063–7.

    Article  Google Scholar 

  10. Suuberg EM. Chemistry of coal conversion. In: Schlosberg RH, editors. New York: Plenum; 1985. p. 67–119.

    Google Scholar 

  11. Phuoc TX, Durbetak P. Int J Heat Mass Transf. 1987;30:2331–9.

    Article  Google Scholar 

  12. Sezen Y. Int J Heat Mass Transf. 1989;32:1992–7.

    Article  Google Scholar 

  13. Chern JS, Allan NH. Combust Flame. 2006;146:553–71.

    Article  Google Scholar 

  14. Pfeifer P, Avnir D. J Chem Phys. 1983;79:3558.

    Google Scholar 

  15. Tricker MJ, Grint A, Audley GJ, Church SM, Rainey VS, Wright C. J Fuel. 1983;6(2):1092.

    Article  Google Scholar 

  16. Fairbridge C, Ng SH, Palmer AD. Fuel. 1986;65:1759.

    Google Scholar 

  17. Salatino P, Zimbardi F, Masi S. Carbon. 1993;31:501.

    Google Scholar 

  18. Friesen WI, Ogunsola OI. Fuel. 1995;74:604.

    Google Scholar 

  19. He R, Xu XC, Chen CH, Fan H, Zhang B. Fuel. 1998;77:1291–95.

    Google Scholar 

  20. He R, Sato J, Chen CH. Combust Sci Technol. 2002;174:19–37.

    Article  Google Scholar 

  21. McMahon PJ, Snook IK, Moss SD, Johnston PR. Energy Fuels. 1999;13:965.

    Google Scholar 

  22. Cao L, He R. Combust Sci Technol. 2010;182:822–41.

    Google Scholar 

  23. Chen Y, He R. J Anal Appl Pyrolysis. 2011;90:72–9.

    Google Scholar 

  24. Suuberg EM, Deevi SC, Yun YS. Fuel. 1995;74:1522–30.

    Google Scholar 

  25. Friesen WI, Ogunsola OI. Fuel. 1995;74:604–9.

    Google Scholar 

  26. Li YH, Lu GQ, Rudolph V. Part Part Syst Character. 1999;16:25–31.

    Article  MATH  Google Scholar 

  27. Wang X, He R, Chen Y. Fuel. 2008;87:878–84.

    Google Scholar 

  28. Solomon PR, Serio MA, Suuberg EM. Prog Energy Combust Sci. 1992;18:133.

    Article  Google Scholar 

  29. Gefen Y, Aharony A, Alexander S. Phys Rev Lett. 1983;50:77.

    Google Scholar 

  30. Levitz P. Europhys Lett. 1997;39:593.

    Google Scholar 

  31. Costa M, Araujo A, Silva H, Andrade J Jr. Phys Rev E. 2003;67:061406.

    Google Scholar 

Download references

Acknowledgements

The work is financially supported from National Natural Science Foundation of China (No.50976055) and China Special Funds for Major State Basic Research Projects (No.2006CB200305).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg & Tsinghua University Press

About this paper

Cite this paper

Chen, Y., Wang, X., Cao, L., He, R. (2013). Effects of Fractal Pore on Coal Devolatilization. In: Qi, H., Zhao, B. (eds) Cleaner Combustion and Sustainable World. ISCC 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30445-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30445-3_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30444-6

  • Online ISBN: 978-3-642-30445-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics