Skip to main content

Coevolution of Gene Families: Models, Algorithms, and Systems Biology

  • Chapter
  • First Online:
Evolutionary Biology: Mechanisms and Trends
  • 1844 Accesses

Abstract

A pair of gene families coevolves if the two gene families have correlative patterns of evolution. Recent studies in the field of evolutionary systems biology have demonstrated the advantages of exploiting co-evolutionary information. Specifically, it was shown that coevolution can be used for inferring physical and functional interactions, and ancestral genomic sequences; in addition, it was shown that co-evolution information can be utilized for understanding cellular systems and their evolution. To this end, corresponding models, algorithms, and statistical approaches have been developed. In this chapter, I review the recent advances in the field concentrating on algorithms for analyzing co-evolutionary information and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker D, Meade A, Pagel M (2007) Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes. Bioinformatics 23(1):14–20

    Article  PubMed  CAS  Google Scholar 

  • Beiko RG, Harlow TJ, Ragan MA (2005) Highways of gene sharing in prokaryotes. Proc Natl Acad Sci U S A 102(40):14332–14337

    Article  PubMed  CAS  Google Scholar 

  • Birin H, Tuller T (2011) Efficient algorithms for reconstructing gene content by co-evolution. BMC Bioinform 12:S12

    Article  Google Scholar 

  • Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson SG (2004) Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc Natl Acad Sci U S A 101(26):9722–9727

    Article  PubMed  CAS  Google Scholar 

  • Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO et al (2004) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5(5):R35

    Article  PubMed  Google Scholar 

  • Bridgham JT, Carroll SM, Thornton JW (2006) Evolution of hormone-receptor complexity by molecular exploitation. Science 312(5770):97–101

    Article  PubMed  CAS  Google Scholar 

  • Chang JT (1996) Full reconstruction of Markov models on evolutionary trees: identifiability and consistency. Math Biosci 137(1):51–73

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Dokholyan NV (2006) The coordinated evolution of yeast proteins is constrained by functional modularity. Trends Genet 22(8):416–419

    Article  PubMed  CAS  Google Scholar 

  • Dagan T (2011) Phylogenomic networks. Trends Microbiol 19(10):483–491

    Article  PubMed  CAS  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6(5):361–375

    Article  PubMed  CAS  Google Scholar 

  • Dieterich C, Clifton SW, Schuster LN, Chinwalla A, Delehaunty K et al (2008) The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nat Genet 40(10):1193–1198

    Article  PubMed  CAS  Google Scholar 

  • Elias I, Tuller T (2007) Reconstruction of ancestral genomic sequences using likelihood. J Comput Biol 14(2):216–237

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogeny inference package) version 3.5c: Technical report, Department of genetics, University of Washington, Seattle

    Google Scholar 

  • Fitch W (1971) Toward defining the course of evolution: minimum change for a specified tree topology. Syst Z 20:406–416

    Article  Google Scholar 

  • Hershberg R, Yeger-Lotem E, Margalit H (2005) Chromosomal organization is shaped by the transcription regulatory network. Trends Genet 21(3):138–142

    Article  PubMed  CAS  Google Scholar 

  • Hirsh AE, Fraser HB, Wall DP (2005) Adjusting for selection on synonymous sites in estimates of evolutionary distance. Mol Biol Evol 22(1):174–177

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276(5310):227–232

    Article  PubMed  CAS  Google Scholar 

  • Jermiin LS, Poladian L, Charleston MA (2005) Evolution. Is the “Big Bang” in animal evolution real? Science 310(5756):1910–1911

    Article  PubMed  CAS  Google Scholar 

  • Juan D, Pazos F, Valencia A (2008) High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc Natl Acad Sci U S A 105(3):934–939

    Article  PubMed  CAS  Google Scholar 

  • Kelley BP, Sharan R, Karp RM, Sittler T, Root DE et al (2003) Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci U S A 100(20):11394–11399

    Article  PubMed  CAS  Google Scholar 

  • Kelley R, Ideker T (2005) Systematic interpretation of genetic interactions using protein networks. Nat Biotechnol 23(5):561–566

    Article  PubMed  CAS  Google Scholar 

  • Li G, Steel M, Zhang L (2008) More taxa are not necessarily better for the reconstruction of ancestral character states. Syst Biol 57(4):647–653

    Article  PubMed  CAS  Google Scholar 

  • Lovell SC, Robertson DL (2010) An integrated view of molecular coevolution in protein–protein interactions. Mol Biol Evol 27(11):2567–2575

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Zhang L, Suh BB, Raney BJ, Burhans RC et al (2006) Reconstructing contiguous regions of an ancestral genome. Genome Res 16(12):1557–1565

    Article  PubMed  CAS  Google Scholar 

  • Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S et al (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–1542

    Article  PubMed  CAS  Google Scholar 

  • Ouzounis CA, Kunin V, Darzentas N, Goldovsky L (2006) A minimal estimate for the gene content of the last universal common ancestor—exobiology from a terrestrial perspective. Res Microbiol 157(1):57–68

    Article  PubMed  CAS  Google Scholar 

  • Pagel M (1999a) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol 48(3):612–622

    Article  Google Scholar 

  • Pagel M (1999b) Inferring the historical patterns of biological evolution. Nature 401(6756):877–884

    Article  PubMed  CAS  Google Scholar 

  • Pazos F, Valencia A (2008) Protein co-evolution, co-adaptation and interactions. Embo J 27(20):2648–2655

    Article  PubMed  CAS  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317(5834):86–94

    Article  PubMed  CAS  Google Scholar 

  • Sankoff D (1975) Minimal mutation trees of sequences. SIAM J Appl Math 28:35–42

    Article  Google Scholar 

  • Segre D, Deluna A, Church GM, Kishony R (2005) Modular epistasis in yeast metabolism. Nat Genet 37(1):77–83

    PubMed  CAS  Google Scholar 

  • Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S et al (2005) Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci U S A 102(6):1974–1979

    Article  PubMed  CAS  Google Scholar 

  • Snel B, Huynen MA (2004) Quantifying modularity in the evolution of biomolecular systems. Genome Res 14(3):391–397

    Article  PubMed  CAS  Google Scholar 

  • Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ et al (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307(5709):580–584

    Article  PubMed  CAS  Google Scholar 

  • Thornton JW (2004) Resurrecting ancient genes: experimental analysis of extinct molecules. Nat Rev Genet 5(5):366–375

    Article  PubMed  CAS  Google Scholar 

  • Tuller T, Mossel E (2010) Co-Evolution is incompatible with the markov assumption in phylogenetics. IEEE/ACM Trans Comput Biol Bioinform 2010:24

    Google Scholar 

  • Tuller T, Kupiec M, Ruppin E (2009a) Co-evolutionary networks of genes and cellular processes across fungal species. Genome Biol 10(5):R48

    Article  PubMed  Google Scholar 

  • Tuller T, Felder Y, Kupiec M (2010a) Discovering local patterns of co-evolution: computational aspects and biological examples. BMC Bioinformatics 11(43):43

    Article  PubMed  Google Scholar 

  • Tuller T, Birin H, Kupiec M, Ruppin E (2010b) Reconstructing ancestral genomic sequences by co-evolution: formal definitions, computational issues, and biological examples. J Comput Biol 17(9):1327–1344

    Article  PubMed  CAS  Google Scholar 

  • Tuller T, Birin H, Gophna U, Kupiec M, Ruppin E (2009b) Reconstructing ancestral gene content by coevolution. Genome Res 20(1):122–132

    Article  PubMed  Google Scholar 

  • Ulitsky I, Shamir R (2007) Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks. Mol Syst Biol 3(104):104

    PubMed  Google Scholar 

  • Wu J, Kasif S, DeLisi C (2003) Identification of functional links between genes using phylogenetic profiles. Bioinformatics 19(12):1524–1530

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17(1):32–43

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Kupiec M, Gophna U, Tuller T (2011) Analysis of coevolving gene families using mutually exclusive orthologous modules. Genome Biol Evol 3:413–423

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamir Tuller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tuller, T. (2012). Coevolution of Gene Families: Models, Algorithms, and Systems Biology. In: Pontarotti, P. (eds) Evolutionary Biology: Mechanisms and Trends. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30425-5_4

Download citation

Publish with us

Policies and ethics