Skip to main content

Alternative Splicing as a Source of Phenotypic Differences Between Species: Protein-Level Mechanisms

  • Chapter
  • First Online:
  • 1822 Accesses

Abstract

Recently, an increasing amount of both experimental and computational evidence is pointing to an important role of alternative splicing as a source of phenotypic differences between organisms. However, the mechanisms by which alternative splicing can play this role are still unclear. In this chapter, after reviewing the evidence linking AS and phenotypic diversity, we focus on the study of these mechanisms, at the protein level. First, we describe their sequence-level properties and their overall conservation between species. We then illustrate how these sequence changes can be used to modulate protein function, using our data on the impact of AS on epigenetic regulators and transcription factors. Finally, we study the conservation of AS events between human and mouse, and unveil the existence of putative cases of functional convergence, where AS events may have the same function in both species, in spite of differences in their associated sequence changes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Artamonova II, Gelfand MS (2007) Comparative genomics and evolution of alternative splicing: the pessimists’ science. Chem Rev 107:3407–3430

    Article  PubMed  CAS  Google Scholar 

  • Brett D, Pospisil H, Valcarcel J, Reich J, Bork P (2002) Alternative splicing and genome complexity. Nat Genet 30:29–30

    Article  PubMed  CAS  Google Scholar 

  • Calarco JA, Xing Y, Caceres M, Calarco JP, Xiao X, Pan Q, Lee C, Preuss TM, Blencowe BJ (2007) Global analysis of alternative splicing differences between humans and chimpanzees. Genes Dev 21:2963–2975

    Article  PubMed  CAS  Google Scholar 

  • Carroll SB (2005) Evolution at two levels: on genes and form. PLoS Biol 3:e245

    Article  PubMed  Google Scholar 

  • Consortium TU (2010) The universal protein resource (uniprot) in 2010. Nucleic Acids Res 38:D142–148

    Article  Google Scholar 

  • Davletov B, Jimenez JL (2004) Sculpting a domain by splicing. Nat Struct Mol Biol 11:4–5

    Article  PubMed  CAS  Google Scholar 

  • de la Cruz X, Lois S, Sanchez-Molina S, Martinez-Balbas MA (2005) Do protein motifs read the histone code? BioEssays 27:164–175

    Article  PubMed  Google Scholar 

  • Delaney SJ, Rich DP, Thomson SA, Hargrave MR, Lovelock PK, Welsh MJ, Wainwright BJ (1993) Cystic fibrosis transmembrane conductance regulator splice variants are not conserved and fail to produce chloride channels. Nat Genet 4:426–431

    Article  PubMed  CAS  Google Scholar 

  • Finn RD et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–222

    Article  PubMed  CAS  Google Scholar 

  • Fodor AA, Aldrich RW (2009) Convergent evolution of alternative splices at domain boundaries of the BK channel. Annu Rev Physiol 71:19–36

    Article  PubMed  CAS  Google Scholar 

  • Forslund K, Sonnhammer EL (2008) Predicting protein function from domain content. Bioinformatics 24:1681–1687

    Article  PubMed  CAS  Google Scholar 

  • Fulop C, Cs-Szabo G, Glant TT (1996) Species-specific alternative splicing of the epidermal growth factor-like domain 1 of cartilage aggrecan. Biochem J 319(Pt 3):935–940

    PubMed  Google Scholar 

  • Garcia-Blanco MA, Baraniak AP, Lasda EL (2004) Alternative splicing in disease and therapy. Nat Biotechnol 22:535–546

    Article  PubMed  CAS  Google Scholar 

  • Gharib WH, Robinson-Rechavi M (2011) When orthologs diverge between human and mouse. Brief Bioinform 12:436–441

    Article  PubMed  Google Scholar 

  • Goren A, Ram O, Amit M, Keren H, Lev-Maor G, Vig I, Pupko T, Ast G (2006) Comparative analysis identifies exonic splicing regulatory sequences—The complex definition of enhancers and silencers. Mol Cell 22:769–781

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2011) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 39:W541–5

    Article  Google Scholar 

  • Kim H, Klein R, Majewski J, Ott J (2004) Estimating rates of alternative splicing in mammals and invertebrates. Nat Genet 36:915–916 author reply 916–917

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Magen A, Ast G (2007) Different levels of alternative splicing among eukaryotes. Nucleic Acids Res 35:125–131

    Article  PubMed  CAS  Google Scholar 

  • Kriventseva EV, Koch I, Apweiler R, Vingron M, Bork P, Gelfand MS, Sunyaev S (2003) Increase of functional diversity by alternative splicing. Trends Genet 19:124–128

    Article  PubMed  CAS  Google Scholar 

  • Laake K et al (2000) Characterization of ATM mutations in 41 Nordic families with ataxia telangiectasia. Hum Mutat 16:232–246

    Article  PubMed  CAS  Google Scholar 

  • Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Latchman DS (1998) Eukaryotic transcription factors, 3rd edn. Academic Press, London

    Google Scholar 

  • Laurell H, Grober J, Vindis C, Lacombe T, Dauzats M, Holm C, Langin D (1997) Species-specific alternative splicing generates a catalytically inactive form of human hormone-sensitive lipase. Biochem J 328(Pt 1):137–143

    PubMed  CAS  Google Scholar 

  • Lee C, Wang Q (2005) Bioinformatics analysis of alternative splicing. Brief Bioinform 6:23–33

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D-232

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Altman RB (2003) Large scale study of protein domain distribution in the context of alternative splicing. Nucleic Acids Res 31:4828–4835

    Article  PubMed  CAS  Google Scholar 

  • Lois S, Blanco N, Martinez-Balbas M, de la Cruz X (2007) The functional modulation of epigenetic regulators by alternative splicing. BMC Genomics 8:252

    Article  PubMed  Google Scholar 

  • Lopez AJ (1995) Developmental role of transcription factor isoforms generated by alternative splicing. Dev Biol 172:396–411

    Article  PubMed  CAS  Google Scholar 

  • Lopez AJ (1998) Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu Rev Genet 32:279–305

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bigas N, Audit B, Ouzounis C, Parra G, Guigo R (2005) Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 579:1900–1903

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331

    Article  PubMed  CAS  Google Scholar 

  • Mavrou A, Tsangaris GT, Roma E, Kolialexi A (2008) The ATM gene and ataxia telangiectasia. Anticancer Res 28:401–405

    PubMed  CAS  Google Scholar 

  • Modrek B, Lee CJ (2003) Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet 34:177–180

    Article  PubMed  CAS  Google Scholar 

  • Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463

    Article  PubMed  CAS  Google Scholar 

  • Oakley AJ, Harnnoi T, Udomsinprasert R, Jirajaroenrat K, Ketterman AJ, Wilce MC (2001) The crystal structures of glutathione S-transferases isozymes 1-3 and 1-4 from Anopheles dirus species B. Protein Sci 10:2176–2185

    Article  PubMed  CAS  Google Scholar 

  • Pan Q et al (2004) Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol Cell 16:929–941

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  PubMed  CAS  Google Scholar 

  • Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–65

    Article  PubMed  CAS  Google Scholar 

  • Tajul-Arifin K, Teasdale R, Ravasi T, Hume DA, Mattick JS (2003) Identification and analysis of chromodomain-containing proteins encoded in the mouse transcriptome. Genome Res 13:1416–1429

    Article  PubMed  CAS  Google Scholar 

  • Takeda J et al (2008) Low conservation and species-specific evolution of alternative splicing in humans and mice: comparative genomics analysis using well-annotated full-length cDNAs. Nucleic Acids Res 36:6386–6395

    Article  PubMed  CAS  Google Scholar 

  • Talavera D, Hospital A, Orozco M, de la Cruz X (2007a) A procedure for identifying homologous alternative splicing events. BMC Bioinform 8:260

    Article  Google Scholar 

  • Talavera D, Vogel C, Orozco M, Teichmann SA, de la Cruz X (2007b) The (in) dependence of alternative splicing and gene duplication. PLoS Comput Biol 3:e33

    Article  PubMed  Google Scholar 

  • Talavera D, Orozco M, de la Cruz X (2009) Alternative splicing of transcription factors’ genes: beyond the increase of proteome diversity. Comp Funct Genomics 2009:905894

    Article  Google Scholar 

  • Taneri B, Snyder B, Novoradovsky A, Gaasterland T (2004) Alternative splicing of mouse transcription factors affects their DNA-binding domain architecture and is tissue specific. Genome Biol 5:R75

    Article  PubMed  Google Scholar 

  • Tazi J, Bakkour N, Stamm S (2009) Alternative splicing and disease. Biochim Biophys Acta 1792:14–26

    Article  PubMed  CAS  Google Scholar 

  • Tress ML et al (2007) The implications of alternative splicing in the ENCODE protein complement. Proc Natl Acad Sci U S A 104:5495–5500

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela A, Talavera D, Orozco M, de la Cruz X (2004) Alternative splicing mechanisms for the modulation of protein function: conservation between human and other species. J Mol Biol 335:495–502

    Article  PubMed  CAS  Google Scholar 

  • Wang GS, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8:749–761

    Article  PubMed  CAS  Google Scholar 

  • Zambelli F, Pavesi G, Gissi C, Horner DS, Pesole G (2010) Assessment of orthologous splicing isoforms in human and mouse orthologous genes. BMC Genomics 11:534

    Article  PubMed  Google Scholar 

  • Zheng CL, Kwon YS, Li HR, Zhang K, Coutinho-Mansfield G, Yang C, Nair TM, Gribskov M, Fu XD (2005) MAASE: an alternative splicing database designed for supporting splicing microarray applications. RNA 11:1767–1776

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier de la Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morata, J., Riera, C., de la Cruz, X. (2012). Alternative Splicing as a Source of Phenotypic Differences Between Species: Protein-Level Mechanisms. In: Pontarotti, P. (eds) Evolutionary Biology: Mechanisms and Trends. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30425-5_19

Download citation

Publish with us

Policies and ethics