Skip to main content

Evolution of Multipartite Genomes in Prokaryotes

  • Chapter
  • First Online:
Evolutionary Biology: Mechanisms and Trends

Abstract

Recent findings have shed light on the interplay and roles of multipartite genome structure in relation to bacterial survival and specialization. The majority of bacteria with two chromosomes are members of the Proteobacteria group and recent evidence suggests that the primary (CI) and the accessory chromosomes (CII) are essential and ancient partners of these complex prokaryotic genomes. However, accessory chromosomes have evolved more rapidly to provide increased metabolic plasticity as the CI encodes more essential proteins necessary for cell survival. The flexibility and the high divergence of CII may allow increased adaptability to specialized environments in which the possession of a single chromosome may not fully permit. Models and hypotheses pertaining to the formation of accessory chromosomes and the roles of different inherent genomic factors integral to the evolution of the accessory chromosomes in bacteria such as evolutionary constraints, horizontal gene transfer, partitioning of genes representing different COGs, gene regulation mechanisms, and replication mechanisms are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Balsiger S, Ragaz C, Baron C, Narberhaus F (2004) Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens. J Bacteriol 186(20):6824–6829

    Article  PubMed  CAS  Google Scholar 

  • Bavishi A, Abhishek A, Lin L, Choudhary M (2010a) Complex prokaryotic genome structure: rapid evolution of chromosome II. Genome 53(9):675–687

    Article  PubMed  CAS  Google Scholar 

  • Bavishi A, Lin L, Schroeder K, Peters A, Cho H, Choudhary M (2010b) The prevalence of gene duplications and their ancient origin in Rhodobacter sphaeroides 2.4.1. BMC Microbiol 10:331

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ, Drlica K (2000) Prokaryotic and eukaryotic chromosomes: what’s the difference? BioEssays: News Rev Mol Cell Dev Biol 22(5):481–486

    Article  CAS  Google Scholar 

  • Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462

    Article  PubMed  CAS  Google Scholar 

  • Choudhary M, Fu YX, Mackenzie C, Kaplan S (2004) DNA sequence duplication in Rhodobacter sphaeroides 2.4.1: evidence of an ancient partnership between chromosomes I and II. J Bacteriol 186(7):2019–2027

    Article  PubMed  CAS  Google Scholar 

  • Choudhary M, Mackenzie C, Nereng K, Sodergren E, Weinstock GM, Kaplan S (1997) Low-resolution sequencing of Rhodobacter sphaeroides 2.4.1: chromosome II is a true chromosome. Microbiology 143(10):3085–3099

    Article  PubMed  CAS  Google Scholar 

  • Choudhary M, Mackenzie C, Nereng KS, Sodergren E, Weinstock GM, Kaplan S (1994) Multiple chromosomes in bacteria: structure and function of chromosome II of Rhodobacter sphaeroides 2.4.1. J Bacteriol 176(24):7694–7702

    PubMed  CAS  Google Scholar 

  • Choudhary M, Zanhua X, Fu YX, Kaplan S (2007) Genome analyses of three strains of Rhodobacter sphaeroides: evidence of rapid evolution of chromosome II. J Bacteriol 189(5):1914–1921

    Article  PubMed  CAS  Google Scholar 

  • Cooper VS, Vohr SH, Wrocklage SC, Hatcher PJ (2010) Why genes evolve faster on secondary chromosomes in bacteria. PLoS Comput Biol 6(4):e1000732

    Article  PubMed  Google Scholar 

  • Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394–1403

    Article  PubMed  CAS  Google Scholar 

  • Dryden SC, Kaplan S (1990) Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res 18(24):7267–7277

    Article  PubMed  CAS  Google Scholar 

  • Duigou S, Knudsen KG, Skovgaard O, Egan ES, Lobner-Olesen A, Waldor MK (2006) Independent control of replication initiation of the two Vibrio cholerae chromosomes by DnaA and RctB. J Bacteriol 188(17):6419–6424

    Article  PubMed  CAS  Google Scholar 

  • Egan ES, Fogel MA, Waldor MK (2005) Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol Microbiol 56(5):1129–1138

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Flores M, Mavingui P, Fuentes SI, Hernandez G, Davila G, Palacios R (2003) Natural genomic design in Sinorhizobium meliloti: novel genomic architectures. Genome Res 13(8):1810–1817

    PubMed  CAS  Google Scholar 

  • Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406(6795):477–483

    Article  PubMed  CAS  Google Scholar 

  • Itaya M, Tanaka T (1997) Experimental surgery to create subgenomes of Bacillus subtilis 168. Proc Nat Acad Sci U S A 94(10):5378–5382

    Article  CAS  Google Scholar 

  • Carins J (1963) The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol 6(3):208–213

    Google Scholar 

  • Jumas-Bilak E, Michaux-Charachon S, Bourg G, Ramuz M, Allardet-Servent A (1998) Unconventional genomic organization in the alpha subgroup of the Proteobacteria. J Bacteriol 180(10):2749–2755

    PubMed  CAS  Google Scholar 

  • Karlin S, Barnett MJ, Campbell AM, Fisher RF, Mrazek J (2003) Predicting gene expression levels from codon biases in alpha-proteobacterial genomes. Proc Nat Acad Sci U S A 100(12):7313–7318

    Article  CAS  Google Scholar 

  • Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Logist Q 2(1–2):83–97

    Article  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Danchin A et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256

    Article  PubMed  CAS  Google Scholar 

  • Langille MG, Brinkman FS (2009) IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25(5):664–665

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie C, Choudhary M, Larimer FW, Predki PF, Stilwagen S, Armitage JP, Barber RD, Donohue TJ, Hosler JP, Newman JE, Shapleigh JP, Sockett RE, Zeilstra-Ryalls J, Kaplan S (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth Res 70(1):19–41

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie C, Kaplan S, Choudhary M (2004) Multiple chromosomes: intracellular mechanism for generating sequence diversity. In: Miller RV, Day MJ (eds) Microbial evolution: gene establishment, survival, and exchange. ASM Press, Washington, DC, pp 82–101

    Google Scholar 

  • Neidle EL, Kaplan S (1993) Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol 175(8):2292–2303

    PubMed  CAS  Google Scholar 

  • Nereng KS, Kaplan S (1999) Genomic complexity among strains of the facultative photoheterotrophic bacterium Rhodobacter sphaeroides. J Bacteriol 181(5):1684–1688

    PubMed  CAS  Google Scholar 

  • Novichkov PS, Wolf YI, Dubchak I, Koonin EV (2009) Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J Bacteriol 191(1):65–73

    Article  PubMed  CAS  Google Scholar 

  • Park K, Han E, Paulsson J, Chattoraj DK (2001) Origin pairing (‘handcuffing’) as a mode of negative control of P1 plasmid copy number. EMBO J 20(24):7323–7332

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen T, Jensen RB, Skovgaard O (2007) The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle. EMBO J 26(13):3124–3131

    Article  PubMed  CAS  Google Scholar 

  • Smith CL, Econome JG, Schutt A, Klco S, Cantor CR (1987) A physical map of the Escherichia coli K12 genome. Science 236(4807):1448–1453

    Article  PubMed  CAS  Google Scholar 

  • Suwanto A, Kaplan S (1989a) Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: genome size, fragment identification, and gene localization. J Bacteriol 171(11):5840–5849

    PubMed  CAS  Google Scholar 

  • Suwanto A, Kaplan S (1989b) Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: presence of two unique circular chromosomes. J Bacteriol 171(11):5850–5859

    PubMed  CAS  Google Scholar 

  • Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22(18):2196–2203

    Article  PubMed  CAS  Google Scholar 

  • Wake RG (1973) Circularity of the Bacillus subtilis chromosome and further studies on its bidirectional replication. J Mol Biol 77(4):569–575

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Dziejman M, Mekalanos JJ (2003) Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci U S A 100(3):1286–1291

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Landweber LF (2007) BLASTO: a tool for searching orthologous groups. Nucleic Acids Res 35(Web Server issue): W678–W682

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Enhancement Grant for Research (EGR) from Sam Houston State University to Madhusudan Choudhary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusudan Choudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Choudhary, M., Cho, H., Bavishi, A., Trahan, C., Myagmarjav, BE. (2012). Evolution of Multipartite Genomes in Prokaryotes. In: Pontarotti, P. (eds) Evolutionary Biology: Mechanisms and Trends. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30425-5_17

Download citation

Publish with us

Policies and ethics